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Kinetic Particle In Cell (PIC) methods can extend greatly their range of applica-
bility if implicit time differencing and spatial adaption are used to address the wide
range of time and length scales typical of plasmas. For implicit differencing, we refer
the reader to our recent summary of the implicit moment PIC method implemented in
our CELESTE3D code [G. Lapenta, Phys. Plasmas, 13, 055904 (2006)]. Instead, the
present document deals with the issue of PIC spatial adaptation. Adapting a kinetic
PIC code requires two tasks: adapting the grid description of the fields and moments
and adapting the particle description of the distribution function. Below we address
both issues. First, we describe how grid adaptation can be guided by appropriate
measures of the local accuracy of the solution. Based on such information, grid adap-
tation can be obtained by moving grid points from regions of lesser interest to regions
of higher interest or by adding and removing points. We discuss both strategies. Sec-
ond, we describe how to adapt the local number of particles to reach the required
statistical variance in the description of the particle population. Finally two typical
applications of adaptive PIC are shown: collisionless shocks and charging of small
bodies immersed in a plasma.

1 Introduction
Methods to adapt particle-in-cell (PIC) kinetic plasma calculations are very valu-

able in the study of multiple-length scale problems. Typically, multiple-length scale
problems present small regions of stronger gradients embedded in large systems. In
such conditions, computational efficiency is achieved best by focusing the attention
in the regions of interest.

In PIC methods it is not sufficient to use adaptive grids with finer spacing in the
regions of interest, it is also necessary to rezone the number of particles. By particle
rezoning we define the operation of increasing the number of particles in regions
where higher accuracy is required, and of reducing the number of particles where
lower accuracy can be tolerated. Finer grid spacing leads to a better description of
the electromagnetic fields, but particle rezoning is needed to gain a better description
of the plasma dynamics and a reduction of noise [1].

Particle rezoning can also be beneficial to keep the load of work uniform on a per
cell basis, a feature of crucial interest in a correct load balancing in parallel imple-
mentations.
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In the present work, we review our work in the field, without attempting to present
a complete coverage of the literature. The paper is organizes as follows.

Section 2 reports general comments regarding the task of PIC adaption, discussing
in particular the link of particle and grid adaption and the link of both with time
differencing. Section 3 deals with grid adaptation, while Section 4 deals with particle
adaptation. Section 3 is organized around the two main task of grid adaption: where
to adapt and how to adapt. We answer the question of where to adapt by proposing a
posteriori measures of the local accuracy. We answer the question of how to adapt by
examining two different possibilities: grid motion and grid refinement.

Finally, Section 5 presents to types of simulations where PIC adaption is tested:
shocks and dust charging.

2 PIC Code Adaptation
Multiple scale plasma physics problems present two challenging features. First,

in any given region of the system processes develop at widely different time scales.
Electrons and ions respond with scales made extremely different by their different
masses, and a host of different intabilities can develop each with its own time and
length scales. Second, different regions of the system can have widely separated
spatial and temporal scales. For examples, regions of localized strong gradients can
arise locally, as is the case of current sheets in space systems.

The normal textbook approach to PIC is unsuitable to the conditions described
above. The standard PIC is based on explicit time differencing and is subject to strict
stability constraints. The time step needs to resolve both light-wave propagation and
Langmuir wave propagation:

c�t < �x (1)

ωpe�t < 2 (2)

regardless to our relevance to the scale of interest. The grid spacing needs to resolve
the electron Debye length:

�x < ςλDe (3)

to avoid the so-called finite grid instability [2]. For this reason explicit methods need
to resolve the finest scales everywhere.

When implicit methods are considered [3], the stability constraints (1, 2, 3) are
removed and the local spacing can be chosen according to the required accuracy rather
than the need to avoid instability. A practical condition that ensure good energy
conservation in an implicit PIC method requires that the average electron population
does not travel more than one cell per time step:

vth,e�t < �x (4)

This condition can be satisfied if both grid spacing and time step (but not the one
only) are chosen large, to step over the small and fast scales. The scales not resolved
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accurately are not eliminated but rather deformed and the energy present in them is
damped like in the physical Landau damping but at an accelerated rate [3].

We refer the reader to our recent review of the implicit PIC algorithm used in the
CELESTE code for the details of how the implicit moment method is derived and
used [4, 3]. In the present paper we describe, instead, how implicit PIC methods can
be adapted in space.

To adapt a PIC code to a local scale length, we need to address two issues, how
to change the local grid resolution and how to change the local statistical descrip-
tion of the particle distribution functions. The two issues are described in the two
sections below. The assumption is made that the host PIC method be implicit, so
that large cells do not lead to the finite grid instability described above. Neverthe-
less, some forms of adaptation can also be of relevance to explicit methods and some
of the methods described below can also be used in explicit codes (for example the
application in Section 5.2 is explicit).

3 Grid Adaptation
Grid adaptation can be achieved by grid refinement (i.e. adding more grid points)

in some selected areas or by grid motion (i.e. moving grid points to regions of interest
from regions of lesser interest). In the first case, the adaptive mesh refinement (AMR)
method [5] is obtained. In the second case, the moving mesh adaptation (MMA)
method [6] is obtained. A specific class of MMA algorithms widely used are ALE
methods [7]. In all cases we need guidance. We need to know what interesting mean.
Often, interest is defined based on the knowledge of the solution.

In many plasma physics problems the regions of interest are readily identified.
For example, in space weather simulations localized regions of strong currents are
site of topological changes and require a high resolution while regions of smooth
flow can be described by coarse meshes.

However, in other instances it is not obvious what regions require increased ac-
curacy. In those cases, we need error detectors to tell us where the error is larger.
Here we describe a specific error detector previously applied successfully in plasma
physics problems: the operator recovery error origin (OREO) detector [8].

For AMR codes, the OREO detector provides accurate and automatic determina-
tion of where the discretization error is being generated. This knowledge is directly
used by the AMR method to refine or to coarsen.

For MMA codes, the knowledge of the error needs to be supplemented by a
method to move the grid. Given the error what new grid should we use? To an-
swer this additional problem typical of the MMA method we also present a new
technique citelapenta based on the Brackbill-Saltzman approach [6].
3.1 Automatic guidance on resolution requirements

In a previous paper [8], we have proposed a new error origin detector based on the
extension of the gradient recovery error estimator [9]. We have named the approach
operator recovery error origin (OREO) detector since it extends to any operator the
method used for the gradient operator by the gradient recovery error estimator. Below,
we summarize briefly the procedure involved in its definition and implementation.
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For the sake of definiteness, we shall assume a general N-dimensional grid (where
one of the dimensions could be time) where a vector field vn is node centered. For
notation, we label the cells with c and the nodes with n, using further the notation
n(c) to indicate the nodes neighboring cell c and c(n) to indicate the cells neighboring
node n.

We consider a general multi-dimensional non-linear partial differential operator:

O(q) (5)

Equation (5) summarizes the most general operator acting on a function q(x) defined
on the multidimensional space x.

Equation (5) is discretized on a grid with N nodes xn:

On(q1, . . . , qN ) (6)

From the discretized field qn and from the discretized operator Xn applied to qn

defined only on the grid nodes, it is possible to reconstruct two functions defined
everywhere in the continuum space x:

q̃(x) = ∑
n qn S(x − xn)

Õ(x) = ∑
On S(x − xn)

(7)

where S(x − xn) is the b-spline basis function of order � for interpolation.
The local truncation error is defined as the difference between the linear interpo-

lation of the discretized operator applied to the discretized field X̃q(x) and the exact
differential operator applied to the linear interpolation of the discretized field q̃(x):

e = Õ(x) − Oq̃(x) (8)

The average local truncation error on any given cell c is defined as a norm of the
error e. The L2 norm is often used:

ec =
(

1

Vc

∫
Vc

e2dV

)1/2

(9)

where ec is the average local truncation error over cell c and Vc is the cell volume.
3.2 Moving mesh grid adaptation

We have recently proposed a new approach [10] to variational grid adaptation [6]
based on the minimization of the local truncation error defined above. The method
can be constructed starting from the following equidistribution theorem proven in
Ref. [10]

THEOREM: In a optimal grid, defined as a grid that minimizes the local truncation
error according to the minimzation principle∫

V

| e | d N x , (10)
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the product of the local truncation error in any cell i by the cell volume Vi (given by
the Jacobian J = √

g) is constant:

ei Vi = const (11)

The equidistribution theorem is applied solving the following Euler-Lagrange
equations:

gi j ∂

∂ξ i

(
|e| ∂xi

∂ξ j

)
= 0 (12)

This approach creates a grid where |ei |Vi is constant. Note that the equations above
are identical to the equations used by the Brackbill-Saltzman variable diffusion
method [6]. The primary innovation is that the monitor function is now directly
linked with the local truncation error instead of being left undefined. In the typical
implementations of the Brackbill-Saltzman method, the monitor function is defined
heuristically by the user. The use of the OREO detector proposed here results in a
more accurate scheme [10].

We have applied the grid rezoning described above to our MMA magnetohydro-
dynamics (MHD) code GRAALE [11] based on the ALE discretization [7]. Here we
limit the discussion to the classic spherical 1D implosion test proposed by Noh [12].
An unmagnetized gas with γ = 5/3 initially has ρ = 1, e = 10−4 and uniform
velocity u = −1 (except in the center where u(r = 0) = 0). The problem represents
a serious challenge for Lagrangian calculations and the solution is known to suffer
from serious wall heating due to the use of artificial viscosity to capture shocks. Note
that we are not using artificial heat conduction [12] (a tool to mitigate the wall heating
problem) precisely to highlight the trouble of Lagrangian calculations for the present
case.

The results of an MMA calculation using the adaptive grid is compared with a
reference standard Lagrangian calculation. Figure 1 shows the density at the end of
the Lagrangian and MMA calculation. The use of adaptive grid results in a much
improved solution. The reason for the improvement is explained by the sharper res-
olution of the shock achieved by the adaptation. As noted in the original paper by
Noh [12], a sharper resolution of the shock also implies a reduction of wall heating,
as observed in Fig. 1 for the MMA case.

The use of grid adaptation based on the OREO detector results in an automatic
method to increase the accuracy of the MMA method.
3.3 Adaptive Mesh Refinement (AMR)

To investigate the performance of the OREO detector in 2D, we have applied
it to results obtained with CLAWPACK [13]. CLAWPACK is a publicly available
software based on an AMR solution [5] of the conservation laws. We have applied
the code to the solution of the gas dynamics equations for the Colella’s wedge prob-
lem [14]. A planar M = 10 shock is incident on an oblique surface; the angle be-
tween the shock direction and the surface is π/6. The actual computed results at time
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Fig. 1. Noh’s spherical benchmark: comparison of the density at the end (t = 0.6), for a Lagrangian
(dashed) and MMA (solid line) calculation. The exact solution is also shown (dotted line).

t = 0.2 for a 240×120 grid are shown in Fig. 2 where all the expected features [14]
can be recognized.

The OREO detector is computed based on the results obtained from CLAWPACK
using Algorithm 3. The detector is shown in Fig. 3 for a simulation with a grid
120×60. For comparison we also provide an estimate of the actual error, computed
by difference between the solution on a 120×60 grid and the more accurate solution
on a 240×120 grid. Clearly the OREO detector is successful in detecting all origins
of errors. The shocks are all captured; the slip surface rolling up under the shock is
evident. All features are detected.

For reference, Fig. 3-c shows also a similar analysis conducted on another possi-
ble candidate for error detection often used in the literature. The detector, which we
name warp indicator for convenience, measure the local error as the variance among
the different values obtained at a node when extrapolating the internal energy from
the four directions (backward and forward along x and backward and forward along
y). The analysis in Fig. 3-c shows that the two rightmost planar shocks are captured
well, while the top and bow shocks are barely visible. All the structure inside the
rolling up region within the outer shocks is lost: no slip surface is measured and the
internal shock is also lost. In practice the warp indicator is often supplemented by
other ad hoc detectors to pick up all shocks, but still the rolling up region and the slip
surfaces are often left undetected.

The OREO detector does not miss any feature and can be used reliably alone
without any other ad hoc detector.
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Fig. 2. 2D Gas Dynamics (Eulerian form)—Colella’s benchmark on a 240×120 grid. Density, velocity
and internal energy at the end of a Eulerian calculation (t = 0.2). Results obtained using CLAWPACK.

4 Particle Adaptation
Particle rezoning is needed to increase the number of particles in regions where

high accuracy is required, and to reduce the number of particles where lower accu-
racy can be tolerated. The primary effect of increasing the number of particles is to
reduce the variance of the statistical description of the distribution function. In a PIC
simulation this increases the accuracy defined as typical in MonteCarlo methods, i.e.
as the variance of the simulation.

Particle rezoning must be in effect throughout the calculation to constantly keep
the local required accuracy. In multiple-length scale problems, the region of interest
can move, and particle rezoning must follow the motion to keep the focus where it is
needed. The approach followed here is to use adaptive grids to follow the evolution
of the system [6, 10] and particle rezoning to keep the number of particles per cell
constant. This approach leads to finer grid spacing in the region of interest and,
automatically, to a higher density of computational particles in that region.

The problem of particle rezoning can be formulated [15] as the replacement of
a set of N particles with position xp, velocity vp, charge qp, and mass m p, with
a different set of N ′ particles with position xp′ , velocity vp′ , charge qp′ , and mass
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Fig. 3. 2D Gas Dynamics—Colella’s benchmark on a 120×60 grid at t = 0.2. Comparison of the global
truncation error (a) with the OREO detector (b), and the warp indicator (c).

m p′ . The criterion for replacement is the equivalence between the two sets, defined
as the requirement that the two sets must represent the same physical system, with a
different accuracy. This generic definition of equivalence between two sets is given
practical bearing by specifying two rules for equivalence.

Two sets of particles are considered equivalent if [15]:

1. the two sets are indistinguishable on the basis of their contributions to the grid
moments;

2. the two sets of particles sample the same velocity distribution function.

The first criterion concerns the moments of the particle distribution used to solve
the field equations. The moments are defined at the grid points xg as

Mg =
∑

p

S
(
xg − xp

)
qpF(vp) , (13)

where S is the assignment function [16, 17]. In general, when nonuniform grids are
used, x is the natural coordinate, i.e. the system of coordinates where the spacing
between consecutive points is uniform and unitary in all directions [6]. The function
F of the particle velocity characterizes the moment. In explicit electrostatic codes,
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only the charge density is required:

ρg =
∑

p

Sg(xp)qp (14)

derived from (1) using F(vp) = 1 and using a short notation for Sg(xp) = S(xg −xp).
Electromagnetic and implicit codes [18] require higher order moments like the current
density

Jg =
∑

p

Sg(xp)qpvp (15)

and the pressure tensor

�g =
∑

p

Sg(xp)qpvpvp . (16)

The first criterion requires the two sets of particles to give the same moments
relevant to the field equations. Note that if this criterion is satisfied exactly total
energy and momentum are also automatically conserved. The second criterion is
more difficult to apply in a quantitative fashion. In previous work [1, 15], it has been
proposed to use the χ2 test or the Kolmogorov and Smirnov test to verify that the
particle distribution is preserved. In practice, this is not easily achieved.

In fluid PIC codes, the first criterion is the only one to be applied, and general
schemes for particle rezoning can be derived [19]. In kinetic PIC codes, the computa-
tional particles sample the real plasma velocity distribution, and the second criterion
must also be imposed. In the kinetic case the choices are more limited. For this rea-
son, a simpler approach is followed [1, 15]. To increase the number of particles per
cell, a given particle is split in two or more new particles displaced in space but all
sharing the same speed. The weights and displacements can be chosen to conserve
exactly the grid moments, and the velocity distribution is not altered because all the
particles have the same velocity.

Another approach can be considered. A particle can be split in the velocity space.
The daughter particles have the same position but different velocity. The advantage of
this method is that the charge density is not affected. However, the higher order mo-
ments (current density and energy) cannot be all preserved. Furthermore, the velocity
distribution is altered.

To decrease the number of particles, the splitting operation can be inverted to co-
alesce two particles into one. The difficulty is that, in general, it is impossible to find
two particles with the same velocity. For this reason, particles with different veloc-
ity have to be coalesced. To minimize the perturbation of the velocity distribution,
the particles to be coalesced must be chosen with similar velocity. An alternative
approach is to coalesce three particles into two, which allows one to conserve both
energy and momentum [20].

In the following sections, we will provide the two most successful general tech-
niques to adapt the number of particles in a cell. We refer the reader to a previous
technical description of the various alternatives and their merits [15]
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4.1 Summary of the algorithms for particle rezoning
In the previous sections, we derived all the required blocks to build algorithms

to change the number of particles in any given cell. Here, we provide a precise
algorithmic description of the methods to increase the number of particles per cell
and to decrease the number of particles per cell.
Splitting Algorithm:

Given a cell g with Np particles in a 1D, 2D, or 3D system, any chosen particle
(labeled o) with charge qo (and mass obtained from the charge-to-mass ratio for the
species), position xo (in natural coordinates) and velocity vo can be replaced by N ′

particles, labeled p′ = {1, 2 . . . N ′}. In 1D, N ′ = 2 and the new properties are
qp′ = qo/2, x p′ = xo ±1/Np (where the cell size is unitary), vp′ = vo. In 2D, N ′ = 4
and the new properties are qp′ = qo/4; x1,2 = xo ± 1/Np, x3,4 = xo, y1,2 = yo,
y3,4 = yo ± 1/Np; vp′ = vo. In 3D, N ′ = 6 and the new properties are qp′ = qo/6,
x1,2 = xo ± 1/Np, x3,...6 = xo; y1,2,5,6 = yo, y3,4 = yo ± 1/Np; z1,...4 = zo;
z5,6 = zo ± 1/Np.

Note that the choice of the particle p = o in the set of Np particles in the cell
g is free. In the result sections, we choose the particle with the largest energy:
m pv2

p. Algorithm S1 preserves exactly the velocity distribution function and grid
moments. However, for quadratic assignment functions the grid moments are only
approximately preserved (see Section 3).
Coalescence Algorithm:

Given a cell g with Np particles in 1D, 2D, or 3D systems, choose N = 2 particles
p = {1, 2} close to each other in the phase space. Their properties are qp, xp,
and vp. The two chosen particles can be replaced by one particle (labeled A) with
qA = q1 + q2, xA = (q1x1 + q2x2)/qA, vA = (q1v1 + q2v2)/qA.

Algorithm C1 preserves the overall charge and momentum and the charge density
ρg but perturbs the velocity distribution. Note that one can choose vA to preserve
the energy, but it is not possible to preserve energy and momentum together. The
crucial point of algorithm C1 is to choose two particles close in velocity and space.
A pair search of the two particles closest in velocity is usually too expensive. For this
reason, we perform a diatomic search that sorts the particles into two bins and selects
the largest bin. The binning is repeated in sequence for each spatial direction and
component of the velocity. The binning is continued until the number of particles in
the largest bin is small enough to use a pair search.

5 Examples of Adaptive PIC Simulations
To illustrate the possible applications of adaptive PIC method, below we report

two classic cases where uniform PIC calculations show their limitations: collisionless
shocks and small scales objects (dust particles) immersed in plasmas.
5.1 Collisionless shocks

Simulations of collisionless shocks provide a sensitive test of the accuracy of
particle rezoning methods [1]. In the slow shock calculations considered here, a
magnetized plasma is flowing toward a piston that reflects the particles. A switch off
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slow shock is considered, and the component of the magnetic field perpendicular to
the normal of the piston is set to zero.

We consider here the same conditions reported in Ref. [1]. The initial configu-
ration is chosen according to the Rankine-Hugoniot conditions. The initial ratios of
the electron and ion pressures to the upstream magnetic field are βe = βi = 0.01.
The ratio of ion to electron mass is mi/me = 25; the ratio of the upstream ion cy-
clotron and ion plasma frequencies is ωci/ωpi = 0.01, and the shock normal angle,
with respect to the magnetic field, is ψ = 75◦. The size of the simulation region is
L = 200 c/ωpi , and the shock is followed until ωci t = 50. Particles are injected at
the right boundary to simulate a flowing plasma.

The simulations are performed using CELESTE1D [18], a 1D implicit PIC code,
suitably modified by the author to include particle control.

As a reference, we conduct a reference collisionless shock calculation with a uni-
form grid and without particle rezoning. The grid has 1000 cells giving a uniform
spacing with �x = 0.2 c/ωpi ; 128 electrons and 128 ions per cell are used. Figure 4
shows the stack plot of Bz as a function of the position at 50 equally spaced time
intervals between t = 0 and ωci t = 50.

The reference results are compared with a calculation where particle rezoning is
performed using the algorithms described above for splitting and for coalescences.
The computation uses an adaptive grid with finer spacing in the shock region (�x ≈
0.5 c/ωpi ) and coarser outside. The region of fine spacing expands in time to follow
the motion of the shock. The grid spacing in the region of the shock is kept fixed;
and, consequently, the grid spacing in the coarser region grows to keep the number
of grid points constant and equal to 300. Figure 4 shows the grid spacing at the end
of the simulation, ωci t = 50. Note that the area of the shock is well resolved, while
the upstream region has large cells. We use the grid jiggling technique of randomly
displacing the grid spacing in the large cells to improve the energy conservation of the
simulation [21]. This technique results in a random noise added to the grid spacing
in the large cells. To avoid any noise in the shock region, the jiggling technique is not
used there.

The particles are loaded with a uniform number per cell (the same as before),
leading to higher accuracy where the grid is finer. Particle rezoning is required to
keep the uniformity of the number of particles per cell as the grid is adapted.

Figure 5 shows the profile of Bz at the end (ωci t = 50) of the two calculation
described above. Clearly, the evolution of the system is calculated correctly. In par-
ticular, the shock has traveled backward along the axis for a length of 50 c/ωpi as in
the reference case (Fig. 4) and as required by the Rankine-Hugoniot conditions. The
results have been validated against previously published results [22].
5.2 Charging of dust particles

As a second test, we consider small objects (e.g. dust particles) immersed in a
plasma. This condition is common in industrial applications of plasma physics and
in space and astrophysical occurrences of dusty plasmas. Dust particles immersed in
plasmas tend to acquire a negative charge. The ions and electrons of the plasma reach
the surface and stick to it. If no secondary emission or photoemission is present, the
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Fig. 4. Grid used in the adaptive shock calculation. The grid size in each cell is plotted versus the cell
center. The region of smaller grid spacing moves to the left to follow the shock.
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Fig. 5. Spatial profile of the z component of the magnetic field Bz at the end of the simulation (normalized
to its upstream value) at time ωci t = 50. Two different runs are shown. The first uses a uniform 1000
cells grid (solid line) and the second an adaptive 300 cells grid (dashed line).

equilibrium charge on the dust particle must be negative to repel the more mobile
electrons and attract the ions to achieve a balance of electron and ion currents. This
problem is of interest in laboratory and in space plasmas [23, 24]. We consider here
the case where a plasma with an ion to electron temperature ratio Te/Ti = 20 and ion
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to electron mass ratio mi/me = 1836 is drifting relative to a spherical dust particle
of radius a/λDe = 0.4, where λDe is the electron Debye length. The relative velocity
w is expressed by the Mach number M = wm1/2

i /(kTe)
1/2 = 10. The system is

simulated using a cylindrical coordinate system with the vertical axis along the di-
rection of the plasma flow and centered in the center of the spherical dust particle.
In this configuration, the azimuthal coordinate is invariant, and the problem is 2D
axisymmetric.

The interaction of the dust particle with the plasma is described with the immersed
boundary method. The application of the immersed boundary method in PIC codes
is described in Ref. [25] for fluid problems and in Ref. [26] for plasmas. In the
present work, we will use the immersed boundary explicit PIC code DEMOCRITUS
developed by the author for dusty plasma simulations [23]. A brief description of the
method is given below, more details can be found in Ref. [23].

The dust particle is represented by motionless computational particles (object par-
ticles) with properties suitable to describe the macroscopic properties of the dust.
Dust plasma interface conditions are treated with the immersed boundary method in
two steps.

First, we assign to the object particles a susceptibility χp that can be interpolated
to the vertices of the grid xv to obtain a grid susceptibility:

χv =
∑

p

Svpχp , (17)

where Svp are the linear assignment weights. The grid susceptibility is used to alter
the Poisson’s equation:

Dcv(1 + χv)Gvc′φc′ = ρc , (18)

where the potential φ and the charge density ρ are defined on the cell centers xc

and repeated indexes are summed. The operators Dcv and Gvc are a difference ap-
proximation of the divergence and gradient, respectively. As discussed in detail else-
where [25, 26], Eq. (23) is solved everywhere, including in the interior of the dust
particle. The term (1 +χv) gives an approximation to the correct interface conditions
for the electric field. In the present case, χv is the susceptibility of dielectric dust.

Second, the object particles exert a friction on the plasma particles, via a slowing
property µp that is interpolated to the grid, as in Eq. (22), to produce a grid quantity
µv used to introduce a damping term to the equation of motion of the plasma particles:

dvp

dt
=

∑
v

Ev Svp − vp

∑
v

Svpµv . (19)

The second term in Eq. (24) can be as big as desired to stop the plasma particles
on the surface of the dust. The damping term is zero everywhere outside the region
occupied by the dust. Equations (23) and (24) allow one to treat the field and particle
boundary conditions on the surface of the dust.
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Fig. 6. Initial setup of a dust charging simulation. The dust particle is represented by material computa-
tional particles with appropriate dielectric properties for the immersed boundary method. An adaptive
grid is used to resolve the small sub-Debye scale dust particle.

Figure 6 shows the configuration of the grid and of the dust particle for the prob-
lem considered here. Note that a nonuniform (but constant in time) grid is used to
describe better the sheath around the dust particle. The distance of the dust particle
from the boundaries is 10 λDe. The plasma species are initially loaded according to
a drifting maxwellian distribution with a downward vertical net flow velocity corre-
sponding to a Mach number M = 10. To reach an equilibrium, particles that flow out
of the lower boundary are replaced by particles injected at the top boundary [23].

Figure 7 shows the history of the net charge accumulated on the dust particle. In
this case, particle rezoning was used to ensure the accuracy of the calculation. The
particles are loaded, initially, with a constant number of particles per cell, leading to
a higher concentration around the dust particle where the cells are smaller. However,
the plasma flow tends to empty the region around the dust reducing the accuracy.
Splitting the particles moving toward the dust and coalescing the particles moving
away from it is desirable to keep the number of particles per cell and the accuracy
constant.

If the calculation is repeated without particle rezoning, the accuracy worsens in
time as the region around the dust becomes less populated. Two effects lead to de-
crease accuracy around the dust particle: the particles originally present are in part
captured by the dust and in part just simply flow away according to their average
downward velocity of Mach M = 10. The new particles that replace them are flowing
from regions of larger cells and are less numerous leading to a decrease of accuracy.

As a result of the decrease in accuracy, the dust particle does not reach a steady
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Fig. 7. Evolution of the charge collected by the dust particle. Two runs are shown, both have uniform
grids but one has also particle control (solid line) and the other has no particle control (dashed).

state in the run without particle rezoning.

Acknowledgments. The author thanks Chris Fichtl and Beniamino Rovagnati for their help
with the setup for the non-uniform grid generation in the dust particle simulation. This research
is supported by the Laboratory Directed Research and Development (LDRD) program at the
Los Alamos National Laboratory, by the United States Department of Energy, under Contract
No. W-7405-ENG-36, by the National Nuclear Security Administration under the Advance
Strategic Computing (ASC) Program and by NASA, under the “Sun Earth Connection Theory”
and “Geospace Environment” programs.

References
[1] G. Lapenta and J. U. Brackbill. Dynamic and selective control of the number of particles in kinetic

plasma simulations. J. Computat. Phys., 115:213, 1994.

[2] C. K. Birdsall and A. B. Langdon. Plasma Physics Via Computer Simulation. Taylor & Francis,
2004.

[3] J. U. Brackbill and D. W. Forslund. Simulation of low frequency, electromagnetic phenomena in
plasmas. J. Computat. Phys., 46:271, 1982.

[4] G. Lapenta, J. U. Brackbill, and P. Ricci. Kinetic approach to microscopic-macroscopic coupling in
space and laboratory plasmas. Phys. Plasmas, 13:055904, 2006.

[5] M. J. Berger and J. Oliger. The AMR technique. J. Computat. Phys., 53:484–512, 1984.

[6] J. U. Brackbill. An adaptive grid with directional control. J. Computat. Phys., 108:38, 1993.

[7] C. W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary lagrangian-eulerian computing method for
all flow speeds. J. Computat. Phys., 14:227, 1974.

[8] G. Lapenta. A recipe to detect the origin of error in discretization schemes. J. Computat. Phys.,
59:2065–2087, 2004.

[9] M. Ainsworth and J. T. Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley, 2000.



76 G. Lapenta

[10] G. Lapenta. Variational grid adaptation based on the minimization of local truncation error: Time
independent problems. J. Computat. Phys., 193:167–194, 2004.

[11] J. M. Finn, G. Lapenta, and H. Li. Similarity solutions for magnetic bubble expansion. Phys. Plas-
mas, 11:2082–2096, 2004.

[12] W. F. Noh. Errors for calculations of strong shocks using an articial viscosity and an articial heat
flux. J. Computat. Phys., 72:78, 1987.

[13] R. J. LeVeque. CLAWPACK Version 4.0 User’s Manual. University of Washington, 1999.

[14] P. Colella. Unsplit godunov methods. J. Computat. Phys., 87:171, 1990.

[15] G. Lapenta. Particle rezoning for multidimensional kinetic particle-in-cell simulations. J. Computat.
Phys., 181:317–337, 2002.

[16] R. W. Hockney and J. W. Eastwood. Computer simulation using particles. Taylor & Francis, 1988.

[17] C. De Boor. A Practical Guide to Splines. Springer, 1978.

[18] H. X. Vu and J. U. Brackbill. Celest1d: An implicit, fullykinetic model for low-frequency, electro-
magnetic plasma simulation. Comput. Phys. Comm., 69:253, 1992.

[19] G. Lapenta and J. U. Brackbill. Control of the number of particles in fluid and mhd particle in cell
methods. Comput. Phys. Comm., 87:139–154, 1995.

[20] D. J. Cooperberg, V. Vahedi, and C. K. Birdsall. Paper 3b21. 15th International Conference on the
Numerical Simulation of Plasmas, page Valley Forge, 1994.

[21] J. U. Brackbill and G. Lapenta. A method to suppress the finite grid instability in plasma simulations.
J. Computat. Phys., 114:77, 1994.

[22] H. X. Vu, J. U. Brackbill, and D. Winske. Multiple switch-off shock solutions. J. Geophys. Res.,
97:13839–13852, 1992.

[23] G. Lapenta. Simulation of charging and shielding of dust particles in drifting plasmas. Phys. Plasmas,
6:1442–1447, 1999.

[24] G. Lapenta. Dipole moments on dust particles immersed in anisotropic plasmas. Phys. Rev. Lett.,
75:4409–4412, 1995.

[25] D. Sulsky and J. U. Brackbill. A numerical method for suspension flow. J. Computat. Phys., 96:339,
1991.

[26] G. Lapenta, F. Iinoya, and J. U. Brackbill. Particle in cell simulation of glow discharges in complex
geometries. IEEE Trans. Plasma Sci., 23:769–779, 1995.


