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ABSTRACT

In the first part of this article. a review of plasma simulation
models using finite-size particles is given with an emphasis on the
electostatic models. Physical properties of such simulation models as
well as numerical tecniques will be studied 1in some detail.
Modification to plasma kinetic theory. collisions and fluctuations,
Vlasov-Landau equations will be derived along with an introduction to
a spatial grid. charge-force interpolation and finite-difference
schemes.

In the second part of this article. a study of electrostatic ion
cvclotron waves driven by a field-aligned current will be studied by
numerical simulations. Recent observations of large amplitude
electrostatic ion cyclotron waves (ed/Tex~1) and 1ion conics have
renewed wide interest in the physics of auroral field lines. We show
by numerical simulations that large amplitude ion cyclotron waves can
cause an intense 1ion heating across magnetic field resulting in the
formation of ion conics. In addition. two-dimensional simulations of
the electrostatic ion cyclotron waves indicate a possibility of energy
condensation into a d.c. structure across magnetic field. Such a
d.c. structure 1is associated with large density modulations,
Npax/Npin~l. across magnetic field and may be responsible for the
generation of auroral arc elements.
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PART I: Introduction to Particle Simulation
Models in Plasma Physics

1. INTRODUCTION

The subject of the first part of this lecture is numerical plasma
simulations using particles in which various models are introduced 1in
order to solve nonlinear Vlasov equation. Physical properties of such
simulation models and numerical techniques will be studied in some
detail. Some applications to space plasma physics are given 1In the
second part. Recent development in high speed. large scale computers
and the advancement of our numerical technique have made 1t possible
to simulate an environment which has direct impact on realistic plasma
experiments. Numerical simulation 1is particularly wuseful when
nonlinear effects are important for which only a limited number of
analytic methods are available. Furthermore. one often finds. with a
help from numerical simulations, that the results obtained by means of
numerical simulations are not what analytic theory predicts or what
you have guessed beforehand. One is guided therefore, to develop a
different analytic model or a new physical interpretation leading to a
discovery of new plasma phenomena.

Among many simulation models, emphasis will be placed on the
particle simulation models in which a large number of particles are
followed in time in their self-consistent and external electromagnetic
fields. Knowledge of such particle orbits or characteristics 1is
equivalent to solving the nonlinear Vlasov equation. Solving the
Vlasov equation directly 1is in general much more difficult than
particle simulations, particularly in multi-dimensions. Vlasov
equation, which has an infinite degree of freedom. represents a
dissipationless plasma in which great care must be taken for numerical
smoothing. Paricle distributions can be distorted to an arbitrary
complex degree so that numerical smoothing must be introduced in order
to avoid numerical divergence. In particle simulation. such smoothing
is done most naturally through particle collisions.

In Sec.2, we shall introduce particle simulation models using
finite-size particles. Modification to plasma kinetic theory
including dispersion relations to linear oscillations, collisions and
fluctuations are given. In Sec.3, numerical methods using finite-
size particles in a spatial grid are introduced along with finite-
difference method. Several specific models useful for low frequency
plasma waves and large plasma volume are also discussed.
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2. ELECTROSTATIC PARTICLE SIMULATION MODELS
2.1 Kinetic Equations

We shall briefly review several fundamental Kinetic equations for
a plasma and point out their relation to particle simulation models.
One of the fundamental kinetic equations is the Klimontovich equation
for N-particle distribution functions for electrons and ions.
Defining the distribution function for s-species

fgix.vot) = 2 b8(xX - xj(t)) §(v - vt (@D
LeX jts 2 2 X M
the Klimontovich equation states
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The electromagnetic fields E and B are determined from Maxwell's
equations

VxE-=- 1 32 (3)
~ c 3t
3E
VxB = %ﬁ J o+ % Fr (4)
V. E-=4nyp (5)
v-B=0 (6)
where
Jix, t) = [ dv L s fs(x. v Oy (7)
and
p(x. t) = [ dv Zas fs(x. vt . (8)

These equations must be supplemented by the initial and boundary
conditions for the uniqueness of their solution. Generally speaking,
there is no way of solving the Klimontovich equation analytically
since, for example, we have no knowledge of the initial conditions for
each plasma particle. The Klimontovich equation which is highly
singular is not suitable even for numerical computation. On the other
hand. the characteristics of the Klimontovich equation in phase space
can be followed with relative ease using a high speed computer. The
characteristics of the Klimontovich equation 1is nothing but the
trajectory of each particle in phase space and is defined by

—V— = — I g(ﬁj) =V ox B(xy) 1 (9)
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dx j
d—t__y‘J (10)

from which the charge and current densities are defined by
psix, t) = g q; 6(5 - Kj(t)) (11)
and

Jlx. 1) = X 45 vy b(x - x5(t)) . (12)

This way of solving the Klimontovich equation is best suited for
numerical simulations by using large, fast digital computers.
Differential equations must first be transformed to finite difference
equations before they are programmed into a computer. It often takes
only a few microsecond to integrate or "push" the equation of motion
for one particle for one time step At. Thus more than a few thousands
to a few millions of particles may be used to simulate a plasma within
a reasonable computing time using presently available computers. Ve
shall note here that even a million of simulation particles is far too
few to represent a real plasma. Each simulation particle must
therefore be regarded as representing a large number of real plasma
particles. In this sense a simulation particle may be called a
superparticle. The consequence of wusing such a small number of
particles is the enhancement of statistical fluctuations and
collisional effects both of which tend to mask collective plasma
behavior. In addition, ©#&-function representation of charge and
current densities given by Egs. (11) and (12) must be smoothed out in
general. We will discuss in detail how such smoothing 1is done in
numerical simulations. ‘

When the Klimontovich equation is averaged over the ensembles of
the initial conditions for N-particles, one obtains the Vlasov
equation after neglecting the two-body collisons,

(%)
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This equation 1is formally the same to the Klimontovich equation and
its numerical solution requires special <cares as the distribution
functions evolve into fine structures in phase space.

2.2 Finite-size Particle Model

After discussing plasma kinetic eguations, we will describe
plasma simulation models using finite-size particles in which only the
electrostatic Coulomb interactions are retained. Electromagnetic and
relativistic simulations are discussed elsewhere in the book.
Historically, the first plasma simulation model developed was the one-
dimensional sheet model consisting of zero-thickness charged sheets
interacting with each other under the influence of electrostatic
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Coulomb forces (Buneman 1959, Dawson 1962). While such a sheet model
is wuseful 1in one-dimension., much of the computing is exhausted in
calculating particle crossing which takes place at a distance much
shorter than the Debye length. In plasma simulations., we are
generally interested in the collective phenomena whose wavelengths are
much longer than the Debye length. Furthermore, it is not obvious how
to extend the sheet model into two and three dimensions where the
Coulomb force between two particles becomes arbitrarily large as the
separation of two particles becomes smaller. Since the force changes
very rapidly at close encounter, one must use a small time step for
preserving acceptible numerical accuracy. Again we note the
informations at wavelengths shorter than the Debye length are not
necessary. These considerations lead us to the use of finite-size
particle models in plasma simulations 1in the late 1960's (Hockney
19665 Morse and Nielson, 1969; Birdsall and Fuss, 1969; Kruer et al.,
1973). Much more information on plasma simulations using particles
can be found in Methods in Computatioinal Physics, Vols. 8 (1970) and
Vol. 16 (1976), Hockney and Eastwood (1981), Potter (1973) and
Birdsall and Langdon (in press).

Let us now consider a simulation model in which singular
distributions of charges and potentials are smoothed out without
modifying plasma properties at long wavelengths. Singularities in
charge and force may be naturally removed by considering particles
with finite extent, instead of classical zero-size particles. Thus we
consider particles whose charge and hence current distributions are
given by

pjex) qj S(x - Xj) (14)

(X = ay vy Sx - xy) (s)

where S(x) is the shape factor which determines the distribution of
charge of a finite-size particle. S(x) may be positive and we assume
it is normalized so that

[ Stx)dx =1 . (16)

While the choice of S5(x) is arbitrary, one choice may be a gaussian
shape,
1 x?

(X) = ——— — - —
S(x expl 532

= (27)3n/24n : “n

where n is the dimensionality (n=1,2,3). Here a is the size of the
particle.

One immediate consequence of the use of such extended particles
is the elimination of singularities at short distance while at long
distance, little modification takes place. In fact when two particles
of finite extent approach closer overlapping with each other, the
force between the two becomes smaller and smaller. Thus we would
expect short range collisional interaction will be greatly reduced.
We must carefully estimate Jjust how much modification to classical
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plasma physis has been brought in by using such a model. We show in
the following that long wavelength. collective plasma processes are
little modified while short range collisional effects are greatly
reduced.

2.3 Modification to Plasma Kinetic Theory Using Finite-size Particles

Let wus consider what kind of modifications are necessary for a
plasma of finite-size particles. For this purpose., we shuall assume
that the finite-size particles have no internal degree of freedum and
furthermore they pass through with each other. The force on a
particle centered at (x.v) may be given by

P . . 1 .
Fixg ve t = a [ dx” Six_ = x) DE(X_ . 1)+ = v xBx .ty . (18
Charge and current densities for finite-size particles are given by
pIX. t) = [ dx  S(x - x') pgix’, t) (19)
JIx. t) = [ dx’ S(x - x) Jpix . ot) (200

where pg and Jg are charge and current densities for centers of
finite-size particles defined by Eqs. (11) and (12). Since the above
equations are of the form of convolution integral, theyv take a
particularly simple form when transformed into Fourier space.

F(k. v. t) = q S(-k) [ E(k, t) + % v x Blk. t) ] (21
plk, t) = S(K) pg(k. t) (22)
and

Jik, t) = S(K) Js(k, t) (23)

where
Stk) = [ dx S(x) exp(-ik-x) . (24)
Note S(ki=1 for point particles. Also S(k=0)=1. For gaussian
particles where S(x)=exp(-x?/2a%)/(2n)'7/%2a. S(k)=exp(-k¢a?/2). “a"
will give the “"size" of particles in real space and a~' will be a
measure of the spread in k-space. Generally speaking. S(k)~1 for ka<l
and S(k)~0 for kad >l. For square particles. S(x)=1/Ax for -Ax/2

{(x<{Ax/2 and zero otherwise so that S(k)=sin(kAx/2)/(kAx/2) which
becomes zZero for particle wavelengths where sin(kAx/2)=0 1is
satisfied. In the following we shall assume the shape factor is
symmetric, S(k)=S(-k). which is satisfied for most of the simulation
models. '

2.4 Vlasov-Maxwell Equations
It is straightforward to write down a set of Vlasov-Maxwell

equations for finite-size particles. Assuming f(ﬁ.x,t) is the
distribution function for the center of finite-size particles. Vlasov
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equation is given by

+
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where F(x.v.t) is defined by Eq. (18). Charge and current densities
are given by
plx, t) = q [ dx dyv S(x - x) f(x . v, t) (26)

and

Jix. t) = g [ dx  dv S(x - x) f(x".v, t) v
Much of the plasma properties wusing finite-size particles may be
studied from linear dispersion relation for small amplitude
oscillations. Writing

fix, v, t) = f5(v) + £1(x. v, t) (27)

where f,(v) is the zero-order equilibrium distribution and f; 1is a
small perturbation, the Vlasov equation may be linearized in the
absence of a d.c. magnetic field to find

gﬁl + v %él + gl gég =0 (28)
where
Fy = g / dx™ S(x~ - x) E(x") (29)
and
V- E=dnq [ dx dv S(x - ¥) fy(x', v. t) . (30)

Fourier analyzing in space and time, f;. E~exp(ikx-iwt), it is
straightforward to write

(- e+ ikv) £] = - 2 500 E(K) £4
and
ikE(k) = 4n q S(k) [ dv f(k, v, t)

so that the familiar plasma dielectric constant e(k,w) is given by

0l £,
gk, @) = 1 - —%9 S (k) [ —2

w-KkKv

dv . (31)

Note the only modification to the conventional dielectric constant for
zero-size particles is the modification of whe to wheS?(k). This
modification results from the reduction of the force F between two

finite-size particles. Since S(k)~1 for ka<ll, little modification
takes place at long wavelength while for ka>l, S(k)~0 so that the
interactions in plasmas are greatly reduced. If a 1is chosen

appropriately, one can eliminate the phenomena at wavelengths shorter
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than a. One of such choices is to assume a equal to the Debve lenygth
ip since modes with kip>1 are often unimportant in a plasma. This
does not necessarily mean "a" cannot be much larger than ip and in
fact in some applications a=(10~20) 4p are chosen (Okuda et al..
1979). Detailed discussions on the modification of the dispersion
relation for finite-size particle plasmas is found in Langdon and
Birdsall (1870).

2.5 Collisions and Fokker-Planck Equations

We have seen that the use of finite-size particles reduced the
interactions at wavelengths shorter than the size of a particle "a".
wWe therfore expect that the collisions in a plasma of finite-size
particles can be reduced greatly if a is chosen of the order of the
Debye length ip. We also expect the reduction in particle collisions
in a plasma of finite-size particles in three dimensions is more than
in two dimensions. This is Dbecause the Coulomb force in three
dimensions varies as r~¢ while it goes as r~! In two dimensions soO
that the effects of smoothing by the use of finite-size particles at
short distance are more enhanced in three dimensions.

In order to study the reduction factor, let wus first calculate
the force and the potential between two bare particles of finite
extent. Consider a situation where one particle 1is located at the
origin while the other 1is located at X. The electric field or the
potential due to the particle at the origin is given by

v o E = 4n qy 5(5) (32)
and the force on the second particle at x is given by
F = qp [ E(x") S(x - x') dx . (33)

Fourier transforming Eqs. (32) and (33) and introducing the potential
V for the force F

F=-vv (34)
we find
4nq;q,S?
V(K) = ——— (35)
~ kz
and
Vix) = L/ dk V(K) explikex) (36)
(2m)n D -

where n is the dimensionality. Note that

9192
a

vix) (37)

for x<a so that the potential does not diverge even when the two
particles overlap on top with each other so long as "a" is finite.
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When "a" is taken to be ip. one expects that the collisions must be
greatly reduced as the particle interaction at a distance shorter than
"a" is greatly reduced. More detailed calculations on the force and
the potential is found in Okuda and Birdsall (1970).

It 1is straightforward to derive the Fokker-Planck equation for a
plasma of finite-size particles (Langdon and Birdsall 1970. Okuda and
Birdsall 1970). The collision operator is given by

2

® Vi 9¢l-g99 3 .
ot sobepa b 8 a2 88 vty ) (38)
3t legy1  nip Ap 16m 3v '~ g v dy ~ ~
where
g=v-v’ (39)
and
oo N SA
b=/, d k2 (1+82 /k?1H)? (40
I is a wunit tensor. Note that all the necessary modification is
contained in 1 given by Eq.(40) so that the Fokker-Planck equation
formally remains the same. This is because the velocity space is
unmodified by the use of finite-size particles. For S=1 and no

shielding. =2 In nlﬁ and one recovers the familiar estimate of
collisions

41)

For a plasma of finite-size particles. I is greatly resuced due to the
appearance of S* when a=lp. Numerical integration in Eq.(40) reveals

[~0.1 for a=1p and I~107% for a=104p for a 9gaussian particle.
(Langdon and Birdsall. 1970; Okuda and Birdsall, 1970). Note that the
corresponding values of I for zero-size particles is [=21ln nlB ~ 10 so

that a large reduction is achieved by adapting finite-size particles.

3. NUMERICAL METHODS USING FINITE-SIZE PARTICLES
3.1 Electrostaic Simulation Models

Let us consider finite-size particles with the gaussion form
factor in one dimension so that S(x)=exp(-x?/2a?)//2n a and S(K)=exp(-

kZa?/2). We have shown that the short wavelength modes, ka>l. are
heavily suppressed while leaving the long wavelength modes
unmodified. This would reduce the particle collisions as we have

shown already. It is clear from Eqs. (9) and (10) that the first
step in plasma simulation 1is to calculate the force on a particle.
This can be done in several ways. Note, however, that the number of
long wavelength modes (collective modes) in a plasma is in general
much smaller than the number of particles. In fact the ratio of the
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number of collective modes to the number of particles iIs equal to the
plasma parameter. We should therefore calculate the force on a
particle from electric and magnetic fields rather than directly
summing up the Coulomb force between two interacting particles. Such
a pair-wise calculation would be prohibitively time consuming and
should be avoided unless accurate information 1is required at short
wavelengths.

Let us consider an electrostatic simulation model again. The
electric potential ¢(x.t) is given by Poisson’'s equation

Ve = - 4n % aj S(x - 5]) . (42)
Assuming periodic boundary conditions for ¢ for simplicity. Eq.(42) is
Fourier transformed into k-space.

(k) = ii S(K) % q; expl-ik.x;i) (43)
= K< I 3 ] AR |

where the Fourier transform of the form factor S(k) 1s assumed to be
the same for all the particles.

The force on a particle at x, is given by
Fix) = qj / S(x - 3') E(x') dg' (44)
so that its Fourier transform is given by
F(k) = qj S(K) E(kK) . (45)

The force on a particle at x=x; 1s found by inverting Eq.(45) into x-
space.
E(KJ) = q4 E S(k) E(K) exp(15~§J) (46)

where
E(k) = ik o(k) . (47)

It is clear from Eqs. (43) and (46). that the most time consuming part
of the field calculations hinges on the evaluation of the phaser.
exp(iiE*§J). since MN such operations are required at each time step.
Here M is the number of the Fourier modes and N is the number of
simulation particles. We will review several methods evaluating the
phaser.

3.2 Spectral Method

In this method, only several Fourier modes are retained in the
simulations and Egs. (43) and (46) are calculated as they appear.
Assuming the form of the electric field
kmgx

E(x) = E(k) exp(ikx)

Kmin



