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ABSTRACT

In this chapter, a general algorithm for simulating a
relativistic electromagnetic plasma is given. Emphasis is placed on
how to handle the electron mass dependent on its energy and to treat
boundary conditions for outgoing electromagnetic waves. The results
of mode conversion from an extraordinary wave into an electrostatic
Bernstein wave and radiation generation which exploits the
relativistic effects of electrons such as gyrotron and auroral
kilometric radiation are presented.

1. INTRODUCTION

The subject of this chapter is the interaction between charged
particles and propagating electromagnetic waves. 0f particular
concern are the situations in which the relativistic effect of
electron mass dependent on 1its energy plays influential roles in
generating the electromagnetic wave and the wave amplitude 1is large
such that nonlinear effects are important. Under these circumstances,
the most effective tool in dealing with these phenomena is particle
simulations.

In the early fifties electonic engineers! had already used
particle simulations to 1investigate nonlinear state of wvarious
microwave devices. In their approaches, a steady state is assumed to
exist. An electromagnetic wave with a specified frequency is injected
into the interaction region and its spatial behaviour is followed. On
the other hand, the nonlinear state in plasma physics is far more
complicated. For instance, an electromagnetic wave can decay into
other waves with different dispersive characteristics. A more general
approach to particle simulation?+3 was introduced in the late fifties
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to study two-stream instability. Since that time a great deal of
progress in computing power and simulation techniques has been made.
Undoubtedly, particle simulations have made significant contribution
to deeper understanding of plasma behavior.

In particle simulation the computer is employed to advance the
motion of large number of charged partices. moving under the influence
of the self-consistent and externally applied fields. The most
general equations to represent these interactions are the Maxwell's
equations
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Y cV x B - 4nJ
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V-B =0
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and the relativistic equation of motion

dP; - P, x B
EI— = q5 { E + P2 } (2)
mic (1 + =2 )1/%
A w5 c?

where most of the symbols appearing in these equations have been
defined 1in the previous chapters. Since computr time and storage are
limited, discrete time step and spatial grids have to be wused to
change Eqs.(1) and (2) into finit difference equations. The basic
schemes for solving these equations® have been described extensively
in the previous chapters and will not be repeated. Here only the
difference from the previous approach will be emphasized.

Instead of advancing the electromagnetic fields on each spatial
grid®. one can make use of Fast Fourier Transform (FFTl and agvances
their Fourier components®. To facilitate this we split E and J into
transverse and longitudinal components: of course B only has
transverse components. The longitudinal component of E is obtained as
in tge electrostatic case from Poisson's equaiton and the transverse E
and B fields are obained by solving the Maxwell equations which now
become

BT (K, t) IO, .
T = ick x Br(k.t) - 4mjp(k.t)
L. (3)
By (K. t) s
%t -ick x Ep(k,t) ,

where the transverse components of the current are defined by
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KK - J(K.t)
JTR) = Jket) - g (4)
Here again Egqs. (3) should be converted to finite difference equgtions
in time and a leap frog scheme should be employed to solve for Er and
Br.

Since the Fourier transformation of a Gaussian distribution is
again a Gaussian. the advantage of using a finite sized particle of
Gaussian shape is easily included. Furthermore. as has been shown®
that 1In contrast to the spatial finite differnce scheme, the phase
velocity of electromagnetic wave is greater than ¢ for all Fourier
modes . This 1is also an important attribute of this algorithm.
Especialy, if one is simulating a relativistic plasma as will be done
here. and this is not the case, relativistic particles can exceed the
light velocity in the spatial finit difference scheme. As consequence
they emit spurious Cherenkov radiations which can easily swamp the
pheneomenon we are interested in.

In treating the fully relativistic equations oﬁ motion for the
charged partigles. one now uses the partlcle momentum PJj rather than
the velocity Vj. However, in advancing Pj as can be seen from Eq.(2l‘
we need to know the average value of Pj during a time step. Since Pj
also appears in the denominator of Eq.(2). it is very difficult to use
the straightforward implicit scheme. Instead, one takes advantage of
the fact that the magnetic force «causes only a rotation of the
particle about magnetic field but does not alter the particle energy.
The scheme commogly adopted is the following, using only the elgctric
field to agvance Pj by half time step, then use the updated PJj to
determinelPj ?1. Equation (2) now resembles the nonrelativistic
equation§ of motion and the usual implicit method can be used to
advance Pj.

Various schemes of treating boundary conditions for outgoing
electomagnetic waves will be discussed in Sec.2. The simulation
results of radiation generation which exploit the relativistic effects
of electrons will be presented in Sec 3

2. BOUNDARY CONDITIONS FOR OUTGOING ELECTROMAGNETIC WAVES

An electromagnetic wave originated in a plasma region can
propagate into vacuum regions. If there are no reflicting walls to
confine the radiation, the electomagnetic wave can reach infinity. In
order to use a finite space to simulate an infinite region, some
approximations have to be imposed on the Maxwell equaitons. There are
three algorithms which have been successfully implemented in
simulating wvarious electomagnetic phenomena in plasma physics. They
will be briefly described in this section. The first two algorithms
are appropriate for the scheme which advances electromagnetic fields
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on each spatial grid while the last algorithm is convenient for the
scheme using FFT.

2.A. Decomposing Radiation Into Left-and Right-Going Waves

Assmue that space wvariations are in one direction (x) only and

the electromagnetic wave is linearily polarized in vy-direction. Let
Fi=Ethz. The electromagnetic components of Eq. (1) can be written as
3 3 + -
— + — T = % Jo
(at + Cax) F andy (5)

In vacuum F' represents the wave traveling with velocity ¢ in the
negative x-direction wheareas F~ denotes the wave traveling with
velocity ¢ in the positive x-direction. Equation (5) can be solved by
integrating separately the functions F* along the characteristic line
of the light wave (x¥ct=const.) which eliminates the spurious Chrenkov
radiaitons. The grid spacing and time step are linked by the wvacuum
characteristics (Ax/At=c)T. The electromagnetic fields required for
pushing particles can be determined from Ey=(F++F‘)/2 and BZ=(F+—
F7) /2. The outgoing boundary condition for electromagnetic waves 1is
simulated by assuming that the fictitious walls of the simulation
system are radiation transparent.

The algorithm for more general cases involving variations in more
than one direction 1is not quite so simple. Some attempts have been
made without much success. A different algorithm which 1is commonly
adopted in the field of laster fusion® will be discussed in the next
sub-section.

2.B. Projection Operator

Consider a slab geometry which is periodic in the direction y but
is finite in the direction x. In vacuum the wave equation for the
electromagnetic field can be written as

)
( t cG— ) A=0 (6)
3x

3
3t
where A is the wave vector potential and é is a projection operator
which will be defined later. With properly chosen G, Eq. (6) with the
plus sign describes left-going waves (A;) and with the minus sign
represents right-going waves (Ag).

In order to demonstrate how the out-going waves can be absorbed
by a properly chosen G, consider a solution for Eq. (6) of the form

iKyx - ik
A= Cage X w AT explitkyy - 0t)) (7)

Substituting Eq. (7) into Eq. (6) gives
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AR + A = — ( AR - AL ) (8)
Ggo
where
21,2
GO:-——w = (1 ———¥C12< )‘]/2 (9)
CKky ®

From Eq. (8) the reflection coefficient A /AR is zero if G is chosen
to be equal to Go. Empirically. Lindman® has found the best
approximated expansion for G as follows

G =1 +ng1gn (10)
where
“ 202
1 - Bnc?D?

where the operator 6=ay/at. Substitution of Eq.(11) into Eq.(6) and
retaining only the plus sign yields

3 R
- + c3~ ) A= -¢C § hp (12)

( at IxX n=1

where ﬂn=§naA/6x. For each Fourier mode (Kky), the usual finite
difference scheme can be used to solve Eq. (12). Extra storage space
which is small compared with the storage space for plasma region is
required to implement this algorithm because it is only operative in
the wvacuum region. Lindman found that by choosing N=3, a=0.3269,
0.1272, 0.0309, and $=0.7375, 0.9838. 0.9966. the reflection
coefficient 1is at its minimal value for a range of propagation angles
from 00 to 890",

2.C. Resistive boundary Layers

An electromagnetic wave propagates through a resisitive layer can
be completely absorbed if the thickness of the laver is large enough.
The property of a resistive layer can be modeled in particle code by
adding an absorbing region on both sides of the plasma system to
absorb the electromagnetic radiation leaving the plasma region. The
schematic diagram of the simulation model is shown in Figure 1. The
radiation field Ef(x,ky) 1is left unchanged between x=0.5 L, and
x=0.5L4+Lg but is multiplied by a function fa(x) which falls off from
unity quadratically to =zero 1in the absorbing region. Since the
derivative of f,(x) is zero at x=0.5 La and (0.5 La+Ls). the
reflection of an electromagnetic wave passing through these transition
points is minimized. This algorithm can be easily implemented.
However, it suffers the disadvantage of requiring more storage space
to model the absorption regions than the previous two algorithms.

As an example, a mode conversion process?® will be given to
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Figure 1. Schematic diagram of bounded simulation model. Radiation
is absorbed by multiplying transverse electric field
ET(x.ky) by the absorbing function f,(x) at each time

step.

demonstrate the effectiveness of the outgoing wave boundary
condition. For convenience, the resistive laver algorithm 1s chosen
for our particle model. Consider an extraordinary wave of given o,
propagates to the upper hybrid resonant layer. both 1its phase and
group velocities approach zero in a collisionless cold plasma and the
wave energy is converted into upper hybrid oscillations. For
simplicity, consider a normal incident (Figure 1.8=907) extraordinary
wave which is launched from the high field side into a plasma with
uniform density. The magnetic field is assumed to vary linearly

Bno(x) X
0 -- =] - — (13)
Byt0) Ly

where Ly 1is magnetic field scale length. The propagation of the
extraordinary wave is governed by Maxwell's equations and the equation
of motion which can be simplified to

d’E, Ry 9pe (wh-0hetivey) ~
—Z s =3 1 - 28— 5 } Ep = 0 (14)
dx ¢ € wi-upe-0iati—(204-03 )
o"UpeTleetly TR0 pe
) Yce Whe
Ey = -i B, — (15)
0o 2

P v
~02 -2 j— 2 -
05-0pe wce+1mo(2wo 0he)

where v is a phenomenological damping rate. In the computer
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Figure 2. The electrostatic (Ey) and electromagnetic (E;) field
spatial distribution at wpe=500. (a) from cold plasma
theory. (b) from computer simulation with immobile ions.

simulation, a current sheet is located at the high field side of the
vacuum region. The current flows along the z direction and oscillates
at a frequency w, to generate an extraordinary wave which when it
reaches the plasma region will induce an electron to oscillate with a
velocity Vo=eEy/mw,. The parameters for the simulation are chosen to
be Te/mc?=1.7x10"%, Vo/c=0.01, 0o/0pe=1.4.Ly/ipe=6500.0ce(0)/wpe= 1.53
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and the ions are immobhile. Substituting this set of parameters into

Eq.(14) and (15) and choosing u/mpe=~'l.5x10"3 yield the spatial
distribution of both the electromagnetic component (E;) and the
electrostatic component (Ex). The theoretical result and the
simulation result are displayed in fig.(2a) and Figure (2b) (at

mpet=500) respectively. The agreements are quite good except that the
simulation result shows that there is a short wavelength electrostatic
Bernstein's wave which propagates out of the resonant region into the
high field side with decreasing wavelength. This is a kinetic effect
which the cold plasma theory is unable to reveal.

In the next section. the simulation results of two physical
phenomena which rely on the relativistic effect of the -electrons as
their bunching mechanisms will be described.

3. ELECTRON CYCLOTRON MASER INSTABILITIES

The c¢yclotron radiation at the fundamental or at the first few
harmonics of the cyclotron frequency by weakly relativistic electrons
with non-equilibrium energy distribution and rotating in a magnetic
field had been investigated by Twiss!® in 1958. Based on his theory.
in the past few years, a new class of high power and high efficiency
microwave tubes!! (Gyrotron) has emerged and the auroral kilometric
radiation has been satisfactorily explained.

The basic energy transfer process in electron cyclotron maser
instabilities can be visualized as follows: those electrons being
accelerated by the wave gain energy and rotate slower whereas those
electrons being decelerated by the wave lose energy and rotate faster:
as a result of the electron inertia electrons bunch together
azimuthally; if the initial mismatch Aw=wy-w.e is greater than zero.
the electron bunch is in the decelerating phase of the electromagnetic
wave and a net transfer of enrgy from the electrons to the wave takes
place.

3.A. Gyrotron Amplifiers

In order to simulate the performance of gyrotron amplifiers. what
is called a stretched one and two halves dimensional code is used.
The code is stretched in the sense that the transverse dependence of
the electromagnetic field 1is assumed to be that of the fundamental
empty waveguide mode and the transverse position of the electrons
which have very small Larmor radius is fixed at the location where the
maximum coupling between the electrons and fields takes place.
Electrons are injected at the entrance to the interaction region and
removed at the exit. An oscillating external current in front of the
beam entrance models a matched RF input of arbitrary waveform. The
resulting equaitons to be solvd in the circular waveguide
configuration become
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Figure 3. Output and input power monitored at the electron beam exit
and entrance by calculating Poynting flux in time.
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Figure 4. Electron positions in normalized transverse momentum space
showing bunching at different axial beam locations going
from beam entrance to beam exit in the order as labelled.



112 A. T. Lin

By )
W = leXEd)
TX = ~0coFy (16)
8E¢ )
30 = 1CkyBp + 0By - 4ndy

where w., is the cut-off frequency of the waveguide. Outside the beam
region the radiation 1is absorbed by using the resistive laver
algorithm described in the previous section.

Simulation results for a 70 kev, Vi/Vi=1.5, and | amp electron
beam coupled to TEg; mode of a circular waveguide with radius Ro=0.535
cm and length Lo=10 cm under grazing condition will be discussed. A
series of simulations was <carried out. Figure 3 shows the time
evolution of the input (500 watts) and output Poynting flux (power)
which c¢learly indicates the desired amplification process. Figure 4
gives the spatial evolution (4 quarters along the bheam) of the
transverse momentum which illustrates that the electrons do give up
their transverse energy along the interaction region and that phase
trapping is the saturation mechanism. By changing the input power and
frequency. a comparison of the nonlinear and liner bandwidth can be
obtained (Figure 5). If bandwidth is defined as 3dB down. then the
linear badwidth (80 watts input) is 4.5% versus a nonlinear bandwidth
(500 watts input) of 7.5%.
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Figure 5. Linear and nonlinear gain versus frequency which determines
the band width of an amplifier.
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3.B. Auroral Kilometric Radiation

The electron cyclotron maser mechanism has recently been used to
interpret the auroral kilometric radiation!?. The theory predicts
direct amplification of fast extraordinary mode radiation around the
electron cyclotron frequency which agrees with the observed
polarization and frequency of the radiation in the source region. The
energy source for the instability comes from the anisotropic loss cone
distribuiton of the electron energy which results from the reflection
of enrgetic electrons (~1 kev) originated from the plasma-sheet region
by the earth mirror magnetic fields.

(a)

F (b)

PRNSTEEN B

o 50 100

“’(Upt

Figure 6. Simulations of electron cyclotron maser instability due to
a loss cone distribution, (a) power spectrum. (b) time
evolution, for the electronmagnetic field of the most
unstable mode.
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Most of the theoretical calculations are in the linear region.
The only saturation mechanism which has been discussed is the quasi-
linear flattening of the distribuiton function at the resonant
region. A one and two-halves dimensional relativistic electromagnetic
particle code with periodic boundary conditions is used to address the
saturation mechanism of the electron cyclotron maser instability with
parameters appropriate for the auroral region. The electron
distribuiton function is taken to be

PJ
fo(P.Py) = AP? exp( - 257 ) (17
where A is a normalizaiton constant such that fd3Pfo=1. P: and Py are

respectively the momentum of the electron perpendicular and parallel
to the external magnetic field Boey. AP is a measure of the electron
temperature

(AP)?

o yU/2 o et (18)

Te = mc? {1
The electron distribution peaks at P:?=(Ap)? which gives a population
inversion in Pi?. The following parameters are used: Wce/Wpe=7.5.
m’c?/(Ap)?=50, KiBo. and ions are immobile.

Figure 6a gives the power spectrum of the most unstable
extraordinary mode which shows two peaks in the region of wp.>0. From
the cold plasma dispersion relation. there are two frequencies for

each Kkx. The higher frequency mode corresponds to the fast wave
(vp>c) and the lower frequency mode corresponds to the slow wave
(vp<c). They are separated by the right-hand cutoff frequency.

Initially, both modes are excited by the thermal noise. However., only
the fast mode can be amplified by the electrons. Figure 6b displays
the the time evolution of the most unstable mode which shows the
desired exponential growth as well as the beat disturbance between the
fast and slow waves. The growth rate determined from the simulation
is mi/wce=6-6X10_3 which is very close to the theoretical prediction
of 6.7x107%. The unstable mode 1is saturated at mpet=40 and the
conversion efficiency is about 1.5x1073,

At the time of saturation for the most unstable mode. the
electron distribution function (Figure 7) still maintains a small
positive slope. It is until wpe=70 that the loss cone is completely
filled by the electron energy diffusion due to the unstable waves.
This agrees with the simulation result which shows that the total
electromagnetic energy is saturated at wpet=70 and reveals that it
might not be correct to retain only the most unstable mode in
evaluating the energy of the saturated radiation. The change 1in the
electron distribution in time could render some initially stable modes
unstable which would also contribute to the total saturated radiation
energy.

Before comparing the simulation results with the observational
results, a more realistic boundary condition which allows electrons to
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Figure 7. Time evolution of the electron energy distribution at
(a) wpet=0. (b) mpet=40. (c) mpet=70.

g0 out if they are scattered into the 1loss cone should be
implemented. A <cold component of electrons originated from the
ionosphere should also be included in the distribution function.
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