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Propagation of Alfvén Wave Packet in an Anomalous
Dispersion Plasma

Masayoshi TANAKA! and Yoshimitsu AMAGISHI?

! National Institute for Fusion Science, Nagoya 464-01, Japan
2 Faculty of Science, Shizuoka University, Shizuoka 422, Japan

Abstract. Wave packet propagation in an anomalous dispersion medium
is examined both theoretically and experimentally. A new propagation
velocity is derived using the saddle point method. Alfvén-wave packet ex-
periment at Shizuoka University reveals that the new propagation velocity
well agrees with the measured propagation velocities. The center frequency
shift due to the differential damping among Fourier components plays an
essential role on the packet propagation in anomalous dispersion range of
frequency, and is confirmed in this experiment.

8.1 Introduction

A common understanding of wave packet propagation is that the wave
packet or its energy propagates with the group velocity, and that the group
velocity does not exceed the light velocity as long as normal dispersion
media are concerned [1]. However, in anomalous dispersion media, the
group velocity
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may exceed the light velocity or even become infinite when the frequency
derivative of refractive index Re(0n/0w) is negative in the anomalous dis-
persion range of frequency [2,3]. The difficulty of group velocity was first
pointed out by Sommerfeld and Brillouin in 1910’s [4,5]. They considered
the signal propagation velocity with a step-like wave train, and showed that
the fastest signal arrives at the light speed, indicating consistency with the
theory of relativity. Hence, they concluded that group velocity loses its
physical meaning in anomalous dispersion media. They also considered the
propagation velocity of the main body of the signal (signal velocity), but,
as written by themselves, “the definition of the signal velocity is some-
what arbitrary”. The problem of characteristic velocity of a wave packet
traveling in an anomalous dispersion medium still remains unsolved [6-9].

A localized absorption of dielectric medium in a certain range of fre-
quency generally produces a negative slope (anomalous dispersion) on the
real part of refractive index, which is related to the imaginary part through
the Kramers-Kronig relation: the real and imaginary parts of dielectric
function are related each other by the causality principle [1]. Hence, anoma-
lous dispersion always accompanies absorption, and we should take both
dispersive and absorptive effects into account in analyzing wave packet
propagation in such media.

To describe a wave packet traveling in an anomalous dispersion medium,
we applied the saddle point method [10] and derived a new propagation
velocity {11, 12]. This velocity is different from the group velocity in the
anomalous dispersion cases, and is identical to the group velocity in the
normal dispersion limit. A distinct feature of the theoretical results is
that the new velocity is not constant even in homogeneous media and this
is attributable to the spectrum variation due to the differential damping
among Fourier components (center frequency shift during the propagation).

Recently, it was experimentally found that the shear Alfvén wave was
strongly influenced by the ion-neutral collision effect and that anomalous
dispersion appeared around the resonant frequency of absorption [13]. Us-
ing this plasma, we carried out the packet propagation experiments, and
determined the average propagation velocity of Alfvén-wave packet by mea-
suring the traveling distance and the flight time of the peak amplitude. The
observed propagation velocity well agrees with the theoretical prediction,
and the center frequency shift has been confirmed in the experiments [14].
We also observed the split pulse propagation: a short pulse with a center
frequency close to the resonant frequency of absorption propagates, after
a certain traveling distance, as a superposition of two wave packets, one of
which is a shear Alfvén mode and the other a compressional Alfvén mode.
This phenomenon is also understood in terms of the differential damping,
and is analyzed using the saddle point method.

In the following, the saddle point method in application to wave packet
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propagation is briefly described in Section 8.2, and the Alfvén-wave packet
experiments are presented in Section 8.3.

8.2 Description of Wave Packet Using The Saddle Point Method

8.2.1 The saddle point method

A wave packet traveling in a homogeneous and dispersive medium is
considered using the saddle point method. The full description of the saddle
point method in application to wave packet propagation is given in Ref. [11].

A wave packet propagating in a dispersive medium is expressed by the
following Fourier integral:

o(z,t) = \/% /_0; dwA(w) expi [n(w)wz - wt] + cc, (1)

c

where ¢(2,t) is the field component of the wave packet, A(w) the Fourier

component, ¢ the light velocity and n(w) the refractive index of the

medium. For simplicity, we consider a Gaussian wave packet ¢(0,t) =

exp —[t2/2A?) cos(w,t), and its Fourier spectrum is given by
A _ _ 2 A2
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where the quantity A is the pulse width and the center frequency (carrier
frequency) is denoted by w.. To apply the saddle point method, we rewrite
eq. (1) as
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o(z,t) = m/_wdwexp [ZOP( )] + c.c, 3)
where P(w) is given by

P(w) =ifz‘l [-”Cﬂz-wt] - z—;A—2(“’T“"ﬁ (4)

The quantity zo is the characteristic scale length and is assumed to be
z/zop > 1. To evaluate eq. (3), P(w) is analytically continued to the
complex-w plane, and the integration path from —oo to oo on the real
w-axis is modified to pass the stationary point (saddle point) of the expo-
nent P(w), which is defined by



296 CHAPTER 8. PROPAGATION OF ALFVEN WAVE PACKET

Then, the main contribution to the integration is that from the saddle
points, and eq. (3) is calculated as the sum of those contributions. Perform-
ing the integration around the each saddle point on the modified integration
path and collecting those contributions, we finally obtain
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exp [%P(ws)] + C.C,

The saddle point frequency w; is usually a complex quantity and is a
function of z and ¢ as seen in eq. (5). When we specify a set of certain values
of z and t, the corresponding saddle point is determined by eq. (5), and the
real space amplitude ¢(z,t) is obtained by substituting the saddle point
ws into eq. (6). If there are more than one saddle points in the complex-w
plane, we have to take all the contributions from the saddle points located
on the modified integration path. Usually we need to draw the contour plot
of Re[P(w)] on the complex-w plane to choose the saddle point to be taken
into account. However, in many cases, only one saddle point is enough to
evaluate the integral and the contributions from the other saddle points are
negligibly small, which is the case we consider in the following.

The amplitude of the wave packet is determined by the real part of the
exponent, Re[P(w;)], in eq. (6) and the peak amplitude at a given traveling
distance is determined by

Re [%] =Re [6P ;t“"‘) + al;g‘:’) %J =0. (7)

Since the saddle point satisfies 0P(w,)/0w = 0, eq. (7) is identical to
Imfw] =0 (8)

where w; denotes the saddle point for the peak amplitude; i.e., the saddle
point wy corresponding to the peak amplitude is always located on the real
azis.

The average propagation velocity for the peak amplitude is then ob-
tained from eq. (5). Substituting w; into eq. (5) and noting that w; is
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always a real quantity, we have the following equations:
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where / stands for the real part and ” for the imaginary part. Equation (9) is
the average propagation velocity for the peak amplitude and eq. (10) deter-
mines the quantity w, for a given propagation distance. Although eq. (9) is
in the same form as the conventional group velocity, the derivative is taken
at a different frequency w;. The physical meaning of the quantity w; will
be clear in the later subsection. The quantity w; is a function of propaga-
tion distance, and, therefore, the average velocity given by eq. (9) changes
with the traveling distance even the medium is homogeneous. When we
evaluate the average propagation velocity at a certain distance z, we first
solve eq. (10) to find w; and then evaluate eq. (9) using the w;.

In a normal dispersion medium (absorption free medium), the right-
hand side of eq. (10) vanishes and then w, is always equal to the constant
quantity w.. In this case, the average propagation velocity, eq. (9), is
identical to the group velocity, and is constant as long as the medium is
homogeneous.

The velocity dz/dt, referred to as instantaneous velocity in the follow-
ing, is generally different from the average velocity z/t, and is derived from
the variation of saddle point during the infinitesimal propagation distance.
The saddle point for the peak amplitude, w;, always satisfies

6P(w1, z, t)
Ow

After infinitesimal increment of time t — ¢ + 6t, the peak position and the
corresponding saddle point change as z — z+ 6z, w1 — w1 + dw; to satisfy
eq. (11). Expanding this equation in powers of § and dividing by ét, we
have

=0. (11)
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Noting that w; is always a real quantity, we have the following equations
from the real and imaginary parts of eq. (12),

(12)
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where all the derivative with respect to w is taken at w;,. The full deriva-
tion of the above equations is given in Ref. [12]. In absorption free media
(normal dispersion media), eq. (12) gives

dz c
— = 15
dt nw (15)
5]
w1
dw1 _
5 =0 (16)

the latter of which tells us that w; does not change during the propaga-
tion and, therefore, is equal to the initial quantity w.. Then, eq. (15) is
identical to the conventional group velocity, showing the consistency with
the previous result of the average propagation velocity. It is also verified
that when the propagation distance is infinitesimal, egs. (13) and (14) are
identical to egs. (9) and (10), respectively.

8.2.2 Numerical example

To elucidate the underlying physics in packet propagation in anoma-
lous dispersion media, a numerical example is presented here. An electron
Lorentz gas with a single absorption line is considered as a model medium,
and the refractive index is given by

VO v

—————— 17
w2 — 2ipw (17)

where wy, is the plasma frequency, wp the resonant frequency of absorption
and p the collision frequency. Figure 1 shows the real and the imaginary
part of refractive index. As seen in this figure, the localized absorption is
present at the resonant frequency wp, and the medium exhibits anomalous
dispersion in this frequency range.

Using eq. (5) and (17), we see the motion of saddle point as a function
of time (see Fig. 2). Two cases are presented in the figure, one is a normal
dispersion case (w. < wp) and the other an anomalous dispersion case
(we ~ wp). According to the functional dependence of n(w), there are a pole
and a zero in the lower half plane, and these are connected by the branch cut
(hatched line in the figure). Three saddle points are present in the complex-
w plane, and two of them make no contribution to integration. Thus, the
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Figure 1: Refractive index as a function of frequency. wpe/wo = 0.25, p/wo = 0.02.

motion of the primary saddle point is shown in the figure. The saddle point
moves from the upper half plane to the lower one as time elapses (normal
dispersion case) or is trapped near the brunch cut (anomalous dispersion
case). The saddle points indicated by 1, 2 and 3 in the figure correspond
to the leading half maximum, the peak, and the rear half maximum of the
packet amplitude, respectively.

The wave packet ¢(z,t) is numerically obtained using egs. (2), (6) and
(17). In the calculations, the space coordinate z is first fixed, and the saddle
point is determined by eq. (5) as a function of time ¢. Repeating these
procedures by replacing z with z + 6z, we obtain the wave packet ¢(z,t) in
the whole range of z and t. Figure 3 shows the amplitude of the wave packet
at different propagation distances. Figure 3(a) is for a normal dispersion
case and Fig. 3(b) for an anomalous dispersion case. The peak amplitudes
are normalized to unity for both cases. As seen in the figure, the trajectory
of the peak amplitude coincides with the group velocity trajectory in the
normal dispersion case. However, the group velocity trajectory and the
peak trajectory are completely different in the anomalous dispersion case,
and the latter is not a straight line even the medium is homogeneous. This
means that the propagation velocity changes with the traveling distance.

The physical mechanism of velocity variation during the propagation
is understood by examining the Fourier spectra of the wave packet at the
different traveling distances, which are shown in Fig. 4. Figure 4(a) is
for a normal dispersion case and Fig. 4(b) for an anomalous dispersion
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Figure 2: Motion of saddle point as a function of time for a normal dispersion case
(a) and for an anomalous dispersion case (b). The locations of saddle point and the
corresponding amplitude in the real space are indicated in the figure. B: branch cut.

case. The dashed line indicates the initial profile of the Fourier spectrum
(Fig. 4(b)). In the normal dispersion case, the spectrum does not change its
initial profile after 300 wavelength traveling distance, while, in the anoma-
lous dispersion case, the frequency spectrum shifts away from the resonant
frequency of absorption as the wave packet travels. This is attributable
to the differential damping among the Fourier components; the imaginary
part of refractive index (ox damping rate) is a function of frequency as
seen in Fig. 1, and the Fourier components with frequencies closer to the
resonant frequency of absorption attenuate faster than the rest. Then, af-
ter a certain propagation distance, those components disappear, and the
resultant frequency spectrum is modified such that the center frequency of
the spectrum moves away from the resonant frequency of absorption. This
mechanism always acts on the wave packet and the center frequency shift
continues during the propagation. Therefore, the propagation velocity of
the packet changes with the traveling distance, and is not constant even
the medium is homogeneous.

The physical meaning of the quantity w; is the center frequency of
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Figure 3: Amplitudes of a wave packet observed at different propagation distances for
a normal dispersion case (a) and an anomalous dispersion case. The peak amplitudes
are normalized to unity for both cases, and the propagation distances normalized by the
wavelength are indicated in the right. wc/wo = 0.6 for (a) and 1.0 for (b). wpe/wo = 0.25,

p/wo = 0.02.
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Figure 4: Fourier spectra of a wave packet observed at different propagation distances.
The dashed lines are the initial spectrum profile. The peak amplitudes are normalized
to unity and the traveling distances normalized by the wavelength are indicated in the
right. (a): normal dispersion case, (b) anomalous dispersion case.

the spectrum at a given traveling distance, and it changes in accor-
dance with eq. (10). Since the frequency shift is caused by the differ-
ential damping among the Fourier components, we expect it to be pro-
portional to the traveling distance z and the differential damping rate
Im[dk/dw] = [(Bnw/dw)” /c|, which is exactly the same functional de-
pendence as in eq. (10).

The average propagation velocity as a function of center frequency of
the initial wave packet is shown in Fig. 5, where open circles are determined
by the numerical results, the dashed line is the conventional group velocity
and the solid line is the average velocity obtained by egs. (9) and (10).

8.3 Alfvén-Wave Packet Experiments

We here review the experimental procedure and the main results con-
cerning the wave-packet propagation of Alfvén waves in an anomalous dis-
persion range of frequency [13] [14].



