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N t N t t+( ) = ( ) ( ) ( )1 1λ ,

where N is the population size, λ is the growth rate
and t is discrete time. Thus, we obtain

N t N i
i

t

( ) = ( ) ( ) ( )
=

−

∏0 2
0
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λ .

Suppose the value of λ(i) is α or β at random. The
arithmetic mean of these is

δ α β= +( ) ( )1

2
3.

The t-th power is

δ α βt
t

t= +( ) ( )1

2
4.

The right-hand side has 2t permutations of α and β and
the left-hand side is an arithmetic mean of all permu-
tations on the right-hand side. This is an exponential
model and δ is the mean growth rate. When α = 2, β =
0.5, we obtain δ = 1.25 > 1. Thus, the mean population
size will increase.
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Abstract
Population projection matrix models in random environments are random walk models.
The growth rate of the mean population size, which is equal to the maximum eigenvalue
of the mean matrix, is better than the average of the intrinsic rates of natural increase
calculated by computer simulations, because the population size is more important than
the growth rate. The arithmetic mean of the maximum eigenvalues of matrices for all
permutations converges to the maximum eigenvalue of the mean matrix. The periodicity
of environments is more important than the correlation between environments. Simple
matrices and three numerical models are used as examples.

1.  Introduction

Population projection matrix models, which are
called the Leslie matrix model and the Lefkovitch
matrix model, have been expanded for random envi-
ronments (Caswell 2001). These models have already
been used in fish population dynamics (Cohen et al.
1983; Quinn and Deriso 1999; Akamine 2009). How-
ever, there are two problems with these models. One
is the method of estimating the population growth rate
and the other is the negative correlation of the succes-
sive environmental states. In this paper, we will dis-
cuss these problems using simple models.

Akamine (2011) proved the theorem that the arith-
metic mean of the maximum eigenvalues of matrices
for all permutations of the random walk matrix model
converges to the maximum eigenvalue of the mean
matrix, which is defined as the population growth rate.
Akamine (2010a, b) calculated the maximum
eigenvalues of all permutations to estimate their dis-
tribution, which is more basic than random simulations
generated by computers. We will also discuss these
matters.

2.  Scalar model

The basic model is



96 T. Akamine and M. Suda / Aqua-BioSci. Monogr.  4: 95–104, 2011

doi:10.5047/absm.2011.00403.0095   © 2011 TERRAPUB, Tokyo. All rights reserved.

On the other hand, the logarithm of Eq. (1) is

log log ,N t N t r t+( ) = ( ) + ( ) ( )1 5

where r = logλ is the intrinsic rate of natural increase.
We then obtain

log log .N t N r i
i

t

( ) = ( ) + ( ) ( )
=

−

∑0 6
0

1

This is a random walk model. In the above case, the
mean logarithm of the population size will not increase
because the arithmetic mean of logα and logβ is 0.
When t → ∞, the distribution of ∑r approaches to the
normal distribution. Thus, the distribution of ∏λ in Eq.
(2) approaches to the lognormal distribution.

The definition of the lognormal distribution is

log , .X ≈ ( ) ( )Normal µ σ 2 7

The following are well-established:

Mean X E X( ) = ( ) = +




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( )exp ,µ σ 2

2
8

Median X( ) = ( )exp ,µ 9

Mode X( ) = −( ) ( )exp ,µ σ 2 10

where E(···) is the expected value. Although Eq. (7)
shows that the mean of logN is µ, Eq. (8) shows that
the logarithm of E(N) is µ + σ2/2 > µ.

Which is better for fish population dynamics, Eq. (1)
or Eq. (5)? We think Eq. (1) is better than Eq. (5). This
problem will be discussed again in Section 8. There-
fore, in matrix models, it is better to choose the maxi-
mum eigenvalue of the mean matrix for the population
growth rate, not the average of the population growth
rate. These are described in the following section.

3.  Matrix model

The population projection matrix model in quadratic
form is defined as follows:
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or

n Lnt t+( ) = ( ) ( )1 12,

where ni is the number of individuals in age or cat-
egory class of i, a and b are reproduction rates and c
and d are survival rates. All constants are not nega-
tive. Thus, the projection matrix L is a non-negative
matrix.

When this model is modified as

L S S=


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the t-th power is

L S St
t
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where λ1 and λ2 are eigenvalues and S is a matrix of
eigenvectors.  Eigenvalues are roots of the
eigenequation

λ λ2 0 15− +( ) + −( ) = ( )a d ad bc .

When ν = |λ2|/λ1 < 1, we obtain νt → 0 (t → ∞),

L S S Lt t t≈ 



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≈ ( )− −λ λ1
1

1
11 0

0 0
16.

Therefore, the maximum eigenvalue λ1 is defined as
the population growth rate. The rank of this matrix is

lim rank
t

t

→∞
( ) = ( )L 1 17.

Basic model (12) is expanded in random environ-
ments as

n L nt t t+( ) = ( ) ( ) ( )1 18.

Caswell (2001) defined the population size as

N t w n t w n t w w
n t

n t
( ) = ( ) + ( ) = ( ) ( )

( )




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( )0 0 1 1 0 1
0
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19,

where w0 and w1 are weights. He also defined the av-
erage growth rate as

log log .λs
t t

N t= ( ) ( )
→∞
lim

1
20

This is expressed exactly as
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log log .λs
t t

E N t= ( )[ ] ( )
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1
21

It is not possible to obtain this value analytically, this
is an average of computer simulations.

On the other hand, Cohen et al. (1983) defined the
growth rate of the expected population size as

log log .Λ = ( )[ ] ( )
→∞
lim
t t

E N t
1

22

This is equal to

Λ = ( )[ ]( ) ( )
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lim
t

t
E N t

1
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/
.

They used a general model

L t
b

c t
( ) = ( )
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0

0
24,

where c(t) is a random variable. They also showed the
following equation

  
E t t E

t
L L L L−( ) −( ) ( )[ ] = ( )[ ]( ) ( )1 2 0 0 25L

and proved

Λ = ( ) ( )λ1 26R ,

where the right-hand side is the maximum eigenvalue
of the mean matrix. Akamine (2011) proved this theo-
rem by using eigenvalues for the random walk matrix
model, which is explained in the following section.

4.  Theorem

Two environments expressed as P or Q occur at ran-
dom. The mean matrix of these is

R P Q= +( ) ( )1

2
27

and the t-th power is

R P Q P Qt
t

t
t

i

t i= +( ) = ( ) ( )∑1

2

1

2
28Perm , , , ,

where Perm(P, Q, t, i) is a permutation of P and Q
whose length is t (for example, PPQPQQQPP when t
= 9) and ∑ means the sum of all permutations. This
equation can be rewritten as

R P Qt E t= ( )[ ] ( )Perm , , , 29
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Akamine (2011) proved the equation
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which means that the arithmetic mean of the maximum
eigenvalues of matrices for all permutations on the ran-
dom walk matrix model converges to the maximum
eigenvalue of the mean matrix.

5.  Proof

(Lemma)
The general theory of eigenvalues is as follows: Let

W U V= + ( ). 32

Then

trace trace traceW U V= + ( ). 33

This equation implies

λ λ λk
k

k
k

k
k

W U V( ) = ( ) + ( ) ( )∑ ∑ ∑ . 34

(Proof)
In Eq. (28), the following equations hold:

lim rank lim rank lim rank
t

t
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P Q R1 1 1

35
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When the following equation holds,

lim rank Perm
t

t i
→∞

( )[ ] = ( )P Q, , , ,1 36

Eq. (31) will hold because of the above lemma. The
linear mapping of P or Q in Eq. (11) projects the basic
vectors of the x- and y-axes
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The inner product of these vectors is

′ ⋅ ′ = + = + + ( )e e1 2
2 2 2 2 39ab cd a c b d cos .θ

Thus, when ab + cd ≠ 0, the cosine of these vectors is

0 40
2 2 2 2

< = +

+ +
( )cosθ ab cd

a c b d

and the angle of these vectors is |θ| < π/2. When t →
∞, these projected vectors will overlap with each other,
because Perm(P, Q, 2t, i) involves P or Q over or equal
to t times. Thus, for any Perm(P, Q, t, i), rank[Perm(P,
Q, t, i) ] → 1 (t → ∞). (Q.E.D.) It is easy to expand
this proof for the m-dimensional matrix.

When ab + cd = 0, we can show the exception (A-
model, Akamine 2010a, b):
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These vectors intersect orthogonally and the rank of
matrix D is still 2 when t → ∞.

6.  Correlation and periodicity

In this section we will discuss the correlation and
periodicity of successive environmental states. Let us
consider the A-model (Eq. (41)). The squared matrix
of D is

D BC CB2 1

4 4

1 0

0 1
44= +( ) = 
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
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( )bc
.

In this model, the correlation coefficient of two envi-
ronmental states, B and C , is ρ = –1.

Let us consider the following matrices:
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Thus, we obtain
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We think that the correlation coefficient is difficult to
define for this model because there are three environ-
mental states. For these multi-state models, the perio-
dicity of environmental states is more important than
the correlation of them.

7.  Example

We show three examples for the distributions of
eigenvalues as Matsuda and Iwasa (1993)’s M-model:

P Q R= 

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. .
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. .
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. .
,

Tuljapurkar (1989)’s T-model:
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R
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.
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and Caswell (2001)’s C-model:

P Q R= 
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. .
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Permutation k1)
λ1 λ2 λ2/λ1

n = 1 P 1 1.1483 –0.34833 –0.30334
Q 1 0.8 0 0
m2) 0.974166

n = 2 PP 1 1.3187 0.12134 0.09201
PQ 2 1.04 0 0
QQ 1 0.64 0 0
m 1.009666

m 1.004822

n = 3 PPP 1 1.5143 –0.04226 –0.02791
PPQ 3 1.152 0 0
PQQ 3 0.832 0 0
QQQ 1 0.512 0 0
m 0.997283

m3 0.999094

n = 4 PPPP 1 1.7389 0.01472 0.00847
PPPQ 4 1.3376 0 0
PPQQ 4 0.9216 0 0
PQPQ 2 1.0816 0 0
PQQQ 4 0.6656 0 0
QQQQ 1 0.4096 0 0
m 1.00068

m4 1.00017

n = 5 PPPPP 1 1.9968 –0.00513 –0.00257
PPPPQ 5 1.5309 0 0
PPPQQ 5 1.0701 0 0
PPQPQ 5 1.1981 0 0
PQPQQ 5 0.8653 0 0
PPQQQ 5 0.7373 0 0
PQQQQ 5 0.5325 0 0
QQQQQ 1 0.3277 0 0
m 0.99984

m5 0.999968

n = 6 PPPPPP 1 2.293 0.00178 0.00078
PPPPPQ 6 1.7597 0 0
PPPPQQ 6 1.2247 0 0
PPPQPQ 6 1.3911 0 0
PPQPPQ 3 1.3271 0 0
PPPQQQ 6 0.8561 0 0
PPQPQQ 6 0.9585 0 0
PQPQPQ 2 1.1249 0 0
PPQQPQ 6 0.9585 0 0
PQQPQQ 3 0.6922 0 0
PQPQQQ 6 0.6922 0 0
PPQQQQ 6 0.5898 0 0
PQQQQQ 6 0.426 0 0
QQQQQQ 1 0.2621 0 0
m 1.000036

m6 1.000006

Table 1.  Maximum eigenvalues of matrices for permutations in the M-model. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish population dynamics in random environments, 208–213,  2010,
with permission from the Japanese Society of Fisheries Oceanography.

1)Number of permutations that have the same eigenvalues.
2)Arithmetic mean.
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Table 2.  Maximum eigenvalues of matrices for permutations in the T-model. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish population dynamics in random environments, 208–213,  2010,
with permission from the Japanese Society of Fisheries Oceanography.

1)Number of permutations that have the same eigenvalues.
2)Arithmetic mean.

Permutation k1)
λ1 λ2 λ2/λ1

n = 1 P 1 0.9793 –0.72935 –0.74473
Q 1 0.9913 –0.15383 –0.15518
m2) 0.9853

n = 2 PP 1 0.9591 0.53195 0.55462
PQ 2 3.0692 0.03549 0.01156
QQ 1 0.9827 0.02367 0.02408
m 2.02

m 1.4213

n = 3 PPP 1 0.9393 –0.38798 –0.41304
PPQ 3 1.4288 –0.05445 –0.03811
PQQ 3 2.6445 –0.00628 –0.00238
QQQ 1 0.9742 –0.00364 –0.00374
m 1.7667

m3 1.2089

n = 4 PPPP 1 0.9199 0.28297 0.30761
PPPQ 4 2.5393 0.02189 0.00862
PPQQ 4 1.3698 0.00866 0.00633
PQPQ 2 9.4197 0.00126 0.00013
PQQQ 4 2.6821 0.00094 0.00035
QQQQ 1 0.9658 0.00056 0.00058
m 2.9431

m4 1.3098

n = 5 PPPPP 1 0.9009 –0.20638 –0.22908
PPPPQ 5 1.6461 –0.02411 –0.01465
PPPQQ 5 2.2329 –0.0038 –0.0017
PPQPQ 5 4.2417 –0.002 –0.00047
PQPQQ 5 8.0999 –0.00022 –0.00003
PPQQQ 5 1.3654 –0.00132 –0.00097
PQQQQ 5 2.6495 –0.00015 –0.00006
QQQQQ 1 0.9574 –0.00009 –0.00009
m 3.2199

m5 1.2635

n = 6 PPPPPP 1 0.8823 0.15053 0.1706
PPPPPQ 6 2.2222 0.01276 0.00574
PPPPQQ 6 1.5379 0.00394 0.00256
PPPQPQ 6 7.7884 0.00078 0.0001
PPQPPQ 3 2.0416 0.00297 0.00145
PPPQQQ 6 2.2569 0.00057 0.00025
PPQPQQ 6 3.941 0.00033 0.00008
PQPQPQ 2 28.9105 0.00004 0
PPQQPQ 6 3.941 0.00033 0.00008
PQQPQQ 3 6.9936 0.00004 0.00001
PQPQQQ 6 8.2201 0.00003 0
PPQQQQ 6 1.3524 0.0002 0.00015
PQQQQQ 6 2.628 0.00002 0.00001
QQQQQQ 1 0.9491 0.00002 0.00002
m 4.5326

m6 1.2864
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Table 3.  Maximum eigenvalues of matrices for permutations in the C-model. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish population dynamics in random environments, 208–213,  2010,
with permission from the Japanese Society of Fisheries Oceanography.

1)Number of permutations that have the same eigenvalues.
2)Arithmetic mean.

Permutation k1)
λ1 λ2 λ2/λ1

n = 1 P 1 0.8262 –0.72621 –0.87897
Q 1 0.5583 –0.35826 –0.64174
m2) 0.6922

n = 2 PP 1 0.6826 0.52738 0.77258
PQ 2 3.0203 0.03973 0.01316
QQ 1 0.3117 0.12835 0.41183
m 1.7587

m 1.3262

n = 3 PPP 1 0.564 –0.38299 –0.67907
PPQ 3 0.5556 –0.12959 –0.23325
PQQ 3 0.6679 –0.03593 –0.0538
QQQ 1 0.174 –0.04598 –0.26429
m 0.5511

m3 0.8199

n = 4 PPPP 1 0.466 0.27813 0.59688
PPPQ 4 1.8553 0.02329 0.01255
PPQQ 4 0.2748 0.0524 0.19069
PQPQ 2 9.122 0.00158 0.00017
PQQQ 4 0.7318 0.00656 0.00896
QQQQ 1 0.0971 0.01647 0.16961
m 1.8909

m4 1.1727

n = 5 PPPPP 1 0.385 –0.20198 –0.52464
PPPPQ 5 0.4957 –0.05229 –0.10547
PPPQQ 5 0.4319 –0.02 –0.04631
PPQPQ 5 1.2982 –0.00666 –0.00513
PQPQQ 5 1.9114 –0.00151 –0.00079
PPQQQ 5 0.1678 –0.01716 –0.10228
PQQQQ 5 0.2775 –0.00346 –0.01246
QQQQQ 1 0.0542 –0.0059 –0.10884
m 0.7298

m5 0.9389

n = 6 PPPPPP 1 0.3181 0.14668 0.46114
PPPPPQ 6 1.1581 0.01343 0.0116
PPPPQQ 6 0.2132 0.02432 0.11405
PPPQPQ 6 5.6024 0.00093 0.00017
PPQPPQ 3 0.3087 0.0168 0.05441
PPPQQQ 6 0.4543 0.0038 0.00837
PPQPQQ 6 0.6313 0.00274 0.00433
PQPQPQ 2 27.551 0.00006 0
PPQQPQ 6 0.6313 0.00274 0.00433
PQQPQQ 3 0.4461 0.00129 0.00289
PQPQQQ 6 2.2064 0.00026 0.00012
PPQQQQ 6 0.0891 0.00647 0.07256
PQQQQQ 6 0.2015 0.00096 0.00474
QQQQQQ 1 0.0303 0.00211 0.06979
m 1.9506

m6 1.1178
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Tables 1–3 show λ1, λ2 and λ2/λ1 when t = 1, ..., 6 for
each model. Figure 1 shows the convergence of the
arithmetic mean of the eigenvalues and Figs. 2–4 show
the distribution of the eigenvalues and their logarithms
when t = 6.

In these calculations, the following formula is used

λ λi iPQ QP( ) = ( ) ( ). 52

This is proved easily as follows (Yano 1974): The left-
hand side is

PQx x= ( )λi . 53

Thus, we can obtain

QP Qx Qx( ) = ( )λi . 54

This is the right-hand side of Eq. (52).
Tuljapurkar (1989) showed that rs = logλs = 0.1954
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Fig. 1.  Convergence of arithmetic means of the maximum
eigenvalues of matrices for all permutations to the maxi-
mum eigenvalue of the mean matrix. Relative error is mt /
λ

1
(R). Modified from Bull. Jpn. Soc. Fish. Oceanogr., 74,

Akamine, Mathematical study of matrix models for fish
population dynamics in random environments, 208–213, 
2010, with permission from the Japanese Society of Fisher-
ies Oceanography.

Fig. 2.  Distribution of the maximum eigenvalues of matri-
ces for all permutations and their logarithms in the M-model
when t = 6. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish
population dynamics in random environments, 208–213, 
2010, with permission from the Japanese Society of Fisher-
ies Oceanography.

Fig. 3.  Distribution of the maximum eigenvalues of matri-
ces for all permutations and their logarithms in the T-model
when t = 6. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish
population dynamics in random environments, 208–213, 
2010, with permission from the Japanese Society of Fisher-
ies Oceanography.
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calculated by computer simulations for the T-model.
Table 2 gives us the arithmetic mean of logλ1, which
is 0.1974 when t = 6. This is evidence that the distri-
bution of logλ1 approaches to the normal distribution
when t → ∞. The T- and C-models are approximately
equal to the A-model, which is the reason why they
are cautionary (Caswell 2001).

8.  Discussion

The mean matrix is defined in general as

R P= = > ( )∑ ∑p p pi i
i

i
i

i,  ,  .1 0 55

Thus, theorem (31) holds in general. Caswell (2001)
showed the following relation when t → ∞,

Fig. 4.  Distribution of the maximum eigenvalues of matri-
ces for all permutations and their logarithms in the C-model
when t = 6. Modified from Bull. Jpn. Soc. Fish. Oceanogr.,
74, Akamine, Mathematical study of matrix models for fish
population dynamics in random environments, 208–213, 
2010, with permission from the Japanese Society of Fisher-
ies Oceanography.
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log log , .N t t ts( ) → ( ) ( )Normal λ σ 2 56

Therefore, N(t) distributes lognormally and

log log log .Λ = + ≥ ( )λ σ λs s

2

2
57

He considered that the intrinsic rate of natural increase
rs = logλs is better than logΛ for the population growth
rate. However, we think it is not optimal to compare
these logarithms. We had better compare logλs with Λ,
which is equivalent to comparing logN with N for the
population size. We consider that N is better than logN
due to two reasons. One is that we use the population
size N in fisheries management, not the logarithm
population size logN. The other is that the analysis for
raw data is better than the analysis for transformed data
in statistics. If there is no advantage for raw data, the
lognormal distribution is not necessary for data analy-
sis. Therefore, Λ is better than logλs for population
projection matrix models.

Cautionary T- and C-models have very large
eigenvalues in Tables 2, 3. When these models ap-
proximate the A-model, their large values become very
important. Thus, we had better estimate the distribu-
tion of the growth rate λ1 as a histogram. Calculating
λ1 for all permutations in the short-term is more basic
than many computer simulations carried out over the
long-term in the random walk matrix model. In gen-
eral projection population matrix models, the vector
n(t) has much more information than the scalar N(t)
for the population size.

Caswell (2001) showed that the negative correlation
between environments is important for good popula-
tion growth in the C-model, which is approximately
equal to the A-model. However, we discussed that the
periodicity is more important than the correlation in
many environmental states, for which we expanded the
A-model to a 3-dimesional model in Section 6.

9.  Conclusion

In population projection matrix models, the distri-
bution of the maximum eigenvalues of all permutations
approaches to the lognormal distribution. Their arith-
metic mean converges to the maximum eigenvalue of
the mean matrix. Thus, it is relevant that the popula-
tion growth rate be defined as the maximum eigenvalue
of the mean matrix, not the average of growth rates
calculated by computer simulations.

The negative correlation between environments is not
so important in many conditional environments. We
consider that the periodicity is more important than the
correlation.
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