Interdisciplinary Studies on Environmental Chemistry—Biological Responses to Chemical Pollutants, Eds., Y. Murakami, K. Nakayama, S.-I. Kitamura, H. Iwata and S. Tanabe, pp. 321–330. © by TERRAPUB, 2008.

# Hydroxylated Polychlorinated Biphenyls in the Blood of Cetacean Species Stranded along the Japanese Coast

Satoko MURATA<sup>1</sup>, Tatsuya KUNISUE<sup>1</sup>, Shin TAKAHASHI<sup>1</sup>, Tadasu K. YAMADA<sup>2</sup> and Shinsuke TANABE<sup>1</sup>

<sup>1</sup>Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan <sup>2</sup>National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan

(Received 2 May 2008; accepted 31 July 2008)

**Abstract**—The present study determined the residue levels and patterns of polychlorinated biphenyls (PCBs) and hydroxylated PCBs (OH–PCBs) in the blood of melon-headed whales (*Peponocephala electra*) and finless porpoises (*Neophocaena phocaenoides*) stranded along the Japanese coast during 2005–2006. Total concentrations of OH–PCBs including identified and unknown isomers were in the range of 26–330 pg/g wet wt. and the levels were 1–2 orders of magnitude lower than PCBs. The residue levels of OH–PCBs observed in the blood of two cetacean species were relatively lower than in humans and wildlife reported previously implying poor metabolic capacity for PCBs in these odontocete species. Unknown isomers were dominant among OH–P<sub>5</sub>CBs and –H<sub>6</sub>CBs in these cetacean blood samples; especially OH–P<sub>5</sub>CB levels were considerably higher. When OH–PCB/PCB homologue ratios were calculated, OH–P<sub>5</sub>CB/P<sub>5</sub>CB ratios were higher than the same values for H<sub>6</sub>- and H<sub>7</sub>-chlorinated homologues, suggesting a preferential accumulation of OH–P<sub>5</sub>CBs in cetacean bloods.

Keywords: PCBs, hydroxylated PCBs, blood, cetacean, Japanese coast

#### INTRODUCTION

PCBs are persistent and bioaccumulative chemicals that have been found to reach elevated concentrations in high-trophic animals such as marine mammals (Tanabe, 2002). It has been noted that PCBs disturb thyroid hormone (TH) homeostasis and cerebral nervous system in animals (Brouwer *et al.*, 1995, 1998). A possible mechanism involved in disturbing TH homeostasis may be the competitive binding between PCBs and thyroxine (T4) to transthyretin (TTR) in blood (Brouwer *et al.*, 1998). It has been demonstrated that the binding affinity to TTR was much stronger for hydroxylated PCBs (OH–PCBs), which are formed by oxidative metabolism of PCBs by the cytochrome P450 monooxygenases, than for the parent compounds due to the structural similarity of OH–PCBs to T4 (Brouwer *et al.*, 1998; Cheek *et al.*, 1999). Moreover, it has also been revealed

through the competitive binding assay studies that the binding of para-substituted OH-high chlorinated PCB isomers with chlorine atoms on each of adjacent metapositions to TTR was clearly higher and the binding affinity of several OH-PCB isomers were stronger than the affinity of T4, the natural ligand of TTR (Lans et al., 1993; Cheek et al., 1999; Meerts et al., 2002). Therefore, such parasubstituted OH-PCBs easily persist in blood at higher levels, in which a few OH-PCBs showed longer half-life than the respective parent PCB isomers exist (Sinjari and Darnerud, 1998; Sinjari et al., 1998; Oberg et al., 2002). OH-PCBs have also been detected in blood of several wildlife species, but the levels and patterns vary by species, possibly due to species-specific metabolic capacity by phase I CYP and/or phase II conjugation enzymes and binding affinity to TTR (Bergman et al., 1994; Sinjari and Darnerud, 1998; Olsson et al., 2000; Oberg et al., 2002; Campbell et al., 2003; Li et al., 2003). In addition, in a recent study using reporter gene assays, it was shown that extremely low doses of OH-PCBs  $(10^{-10} \text{ M})$  suppressed T3-induced transcriptional activation of TR; the suppression of TR action by OH-PCBs was not likely due to the ligand competition with T3, implying that this mechanism may be involved in the disturbance of the cerebral nervous system by PCBs (Iwasaki et al., 2002). In fact, little or no binding affinity of OH-PCBs to TR is observed in competitive binding assay examinations using human- and rat-TR (Cheek et al., 1999; Gauger et al., 2004; Kitamura et al., 2005). More recently, it was indicated that OH-PCBs might suppress T3/TR mediated transcription directly through partial dissociation of TR/retinoid X receptor (RXR) from the thyroid hormone-response element (TRE) (Miyazaki et al., 2004).

Because of such observations, investigations on residue levels of OH–PCBs in human and wildlife blood are increasing (Klasson-Wehler *et al.*, 1998; Sandau *et al.*, 2000; Hoekstra *et al.*, 2003; Gebbink *et al.*, 2005). However, very little information on OH–PCBs is available on cetaceans. The present study attempted to elucidate the residue levels and patterns of OH–PCBs in the blood of cetaceans, melon-headed whales (*Peponocephala electra*) and finless porpoises (*Neophocaena phocaenoides*) stranded along the Japanese coast.

#### MATERIALS AND METHODS

The blood samples were collected from melon-headed whales (n = 9: male = 6, female = 3) and finless porpoises (n = 6: male = 3, female = 3) stranded along the coast of Chiba prefecture in Japan during 2005–2006. Samples were stored in the Environmental Specimen Bank (*es*-BANK) for Global Monitoring at Ehime University (Tanabe, 2006) at -20°C until analysis.

Analysis of OH–PCBs and PCBs were performed following the procedure reported previously (Kunisue *et al.*, 2007), with slight modification. The blood sample (10 g) was denatured with HCl. <sup>13</sup>C<sub>12</sub>-labeled 4'OH–P<sub>5</sub>CB120, 4'OH–H<sub>6</sub>CB159, 4'OH–H<sub>7</sub>CB172, and 4OH–H<sub>7</sub>CB187 and 17 <sup>13</sup>C<sub>12</sub>-labeled T<sub>3</sub>–O<sub>8</sub>CB congeners were spiked as internal standards. 2-propanol was added, and then OH–PCBs were extracted thrice with 50% methyl *t*-butyl ether (MTBE)/hexane. The organic phases were combined, evaporated and dissolved in hexane. 1 M

| Species (Nomenclature) |        |        | Mel       | lon-headed | whale (Pepa | onocephala | electra)  |           |          |
|------------------------|--------|--------|-----------|------------|-------------|------------|-----------|-----------|----------|
| Sample ID              | M34072 | M34074 | M34076    | M34077     | 060301-6    | 060301-8   | 060302-25 | 060301-2  | 060302-2 |
| Sex                    | Male   | Female | Male      | Male       | Male        | Male       | Female    | Female    | Male     |
| Body length (cm)       | 249    | 232    | 256       | 256        | 239         | 222        | 250       | 248       | 226      |
| Stranded year          |        |        |           |            | 2006        |            |           |           |          |
| CB52                   | 1200   | 52     | 520       | 630        | 670         | 1600       | 53        | 69        | 390      |
| CB49                   | 430    | 27     | 170       | 250        | 250         | 600        | 28        | 32        | 140      |
| CB44                   | 120    | 43     | 100       | 160        | 94          | 140        | 37        | 37        | 74       |
| CB74                   | 520    | 27     | 190       | 230        | 310         | 700        | 24        | 31        | 160      |
| CB70                   | 44     | 39     | 35        | 39         | 45          | 25         | 23        | 35        | <10      |
| T <sub>4</sub> CBs     | 2400   | 190    | 1000      | 1300       | 1400        | 3100       | 160       | 210       | 760      |
| CB95                   | 1600   | 50     | 600       | 740        | 820         | 1900       | 60        | 74        | 500      |
| CB101                  | 2700   | 69     | 860       | 1100       | 1400        | 3000       | 100       | 130       | 730      |
| CB99                   | 2300   | 35     | 650       | 650        | 840         | 1800       | 62        | 72        | 490      |
| CB119                  | 49     | <10    | 48        | 41         | 51          | 83         | 11        | 22        | 22       |
| CB87                   | 320    | 21     | 140       | 210        | 220         | 420        | 25        | 29        | 120      |
| CB110                  | 110    | 57     | 83        | 130        | 100         | 110        | 64        | 71        | 55       |
| CB118                  | 2600   | 55     | 830       | 990        | 1300        | 2600       | 84        | 100       | 650      |
| CB105                  | 740    | 21     | 260       | 310        | 390         | 820        | 28        | 34        | 210      |
| P.CBs                  | 10000  | 320    | 3500      | 4100       | 5100        | 11000      | 440       | 530       | 2800     |
| CB155                  | 110    | <10    | 22        | 35         | 52          | 96         | <10       | <10       | 31       |
| CB151                  | 690    | 11     | 240       | 240        | 280         | 520        | 27        | 25        | 170      |
| CB149                  | 3000   | 42     | 960       | 970        | 1100        | 2500       | 100       | 95        | 710      |
| CB153                  | 9000   | 100    | 2300      | 2100       | 2900        | 5800       | 340       | 270       | 1800     |
| CB138                  | 7500   | 110    | 2400      | 2100       | 2500        | 5000       | 290       | 240       | 1600     |
| CB158                  | 350    | <10    | 120       | 98         | 130         | 270        | <10       | <10       | 84       |
| CB128                  | 580    | <10    | 150       | 150        | 190         | 510        | 18        | 17        | 110      |
| CB120                  | 230    | <10    | 74        | 87         | 110         | 200        | 10        | <10       | 66       |
| CB156                  | 240    | <10    | 74        | 85         | 120         | 200        | 16        | 14        | 66       |
| CB150                  | 140    | <10    | 47        | 45         | <10         | 100        | <10       | <10       | 32       |
| H CBs                  | 22000  | 260    | 6300      | 5900       | 7500        | 15000      | 790       | 670       | 4700     |
| CB188                  | <10    | <10    | <10       | <10        | /500        | <10        | <10       | <10       | <10      |
| CB133                  | 480    | <10    | 180       | 150        | 160         | 260        | 30        | 16        | 110      |
| CB197                  | 2700   | 25     | 720       | 600        | 700         | 1400       | 170       | 02        | 400      |
| CB187                  | 2700   | 12     | 220       | 100        | 250         | 470        | 50        | 20        | 160      |
| CB185                  | 620    | <10    | 200       | 170        | 100         | 360        | <10       | 10        | 120      |
| CB177                  | 240    | <10    | 200       | 58         | 71          | 140        | <10       | <10       | 120      |
| CB180                  | 3000   | 10     | 860       | 680        | 940         | 1700       | 240       | 120       | 560      |
| CB100                  | 53     | <10    | 20        | 17         | 10          | 31         | 240       | <10       | 70       |
| CB171                  | 1100   | 16     | 20        | 220        | 200         | 550        | 28        | 26        | 210      |
| CB170                  | 76     | <10    | 10        | 10         | 300         | -10        | <10       | -10       | 210      |
| LLCDa                  | 0100   | <10    | 2600      | 2100       | 2800        | <10        | <10       | <10       | 12       |
| CP202                  | 9100   | <10    | 2000      | 2100       | 2800        | 4900       | 22        | 510       | 1800     |
| CD202                  | 110    | <10    | 21        | 41         | 20          | 0.)<br>16  | 12        | <10       | 32       |
| CD201<br>CD100         | 110    | <10    | 170       | 120        | 120         | 40         | 15        | <10       | 1/       |
| CD179<br>CD104         | 420    | 15     | 170       | 120        | 150         | 120        | 57        | 24        | 07<br>19 |
| CD174                  | 320    | <10    | 0/<br><10 | -10        | 94          | 150        | 57        | 24<br><10 | 40       |
| CD203                  | 20     | <10    | <10       | <10        | 220         | <10        | <10       | <10       | <10      |
| U <sub>8</sub> CDS     | 1000   | 13     | 340       | 240        | 320         | 480        | 100       | 48        | 190      |
| I OTAL PCBS            | 45000  | 890    | 14000     | 14000      | 1/000       | 34000      | 2200      | 1800      | 10000    |

Table 1. Concentrations of PCBs and OH–PCBs (pg/g wet wt.) in the blood of melon-headed whales and finless porpoises stranded along the coast of Chiba prefecture, Japan.

KOH in 50% ethanol/ $H_2O$  was added and shaken. The partition process was repeated and the alkaline phases were combined. The remaining organic phase was concentrated and lipid was removed by gel permeation chromatography, and the extract was then passed through activated silica-gel packed in a glass column. PCBs were eluted with hexane and concentrated for GC (Agilent 6890) - MS (Agilent 5973) analysis. The combined alkaline phase was acidified with sulfuric acid, and then OH–PCBs were extracted twice with 50% MTBE/hexane. The organic phases were combined, evaporated, and dissolved in hexane. OH–PCBs in the organic phase were methylated by reaction with trimethylsilyldiazomethane.

| Species (Nomenclature) Finless porpoise (Neophocaena phocaenoides)   Sample ID M34068 M34056 M33764 M33765 M33774 M3   Sex Female Female Male Female Male Male   Body length (cm) 180 150 114 102 114 102   Stranded year 2005 2005 2005 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3771<br>[ale<br>17<br>000<br>890<br>350 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Sample ID     M34068     M34056     M33764     M33765     M33774     M2       Sex     Female     Female     Male     Female     Male     M       Body length (cm)     180     150     114     102     114     102       Stranded year     2005     1100     1100     110     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                     | 3771<br>Iale<br>17<br>000<br>890<br>350 |
| Sex Female Female Male Female Male Male   Body length (cm) 180 150 114 102 114 102   Stranded year 2005 2005 2005 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [ale<br>17<br>000<br>890<br>350         |
| Body length (cm)     180     150     114     102     114       Stranded year     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005     2005 <td>17<br/>000<br/>890<br/>350</td> | 17<br>000<br>890<br>350                 |
| Stranded year     2005       CD52     1200     1100     510     500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000<br>890<br>350                       |
| CD 20 1100 1100 710 (22 17 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000<br>890<br>350                       |
| CB52 1300 1100 710 690 650 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 890<br>350                              |
| CB49 560 680 590 570 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                     |
| CB44 280 480 180 170 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 550                                     |
| CB74 390 700 250 160 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 350                                     |
| CB70 36 160 60 10 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                      |
| T <sub>4</sub> CBs 2500 3200 1800 1600 1200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 600                                     |
| CB95 1300 980 1100 1200 890 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400                                     |
| CB101 2200 2100 1900 1600 950 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                     |
| CB99 1800 1800 2200 2100 1500 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 600                                     |
| CB119 92 100 60 62 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76                                      |
| CB87 360 370 170 110 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180                                     |
| CB110 590 890 570 250 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 490                                     |
| CB118 1900 2300 1300 950 670 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500                                     |
| CB105 430 720 240 130 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230                                     |
| P <sub>5</sub> CBs 8700 9300 7500 6400 4500 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700                                     |
| CB155 110 92 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <10                                     |
| CB151 570 440 740 720 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 700                                     |
| CB149 2000 1800 2400 2200 1400 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                     |
| CB153 6700 7100 9600 7600 4700 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                     |
| CB138 6400 6100 4800 4000 2800 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900                                     |
| CB158 360 360 290 250 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270                                     |
| CB128 600 650 240 330 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330                                     |
| CB167 170 230 130 75 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120                                     |
| CB156 81 230 80 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <10                                     |
| CB157 84 120 <10 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <10                                     |
| H <sub>6</sub> CBs 17000 17000 18000 15000 9800 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000                                     |
| CB188 <10 <10 60 52 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                      |
| CB178 400 400 510 370 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 730                                     |
| CB187 2200 2500 4200 3200 1900 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                     |
| CB183 680 890 1300 840 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 900                                     |
| CB177 580 500 580 420 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 860                                     |
| CB171 230 270 380 250 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 290                                     |
| CB180 2400 3200 4500 2500 1500 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 900                                     |
| CB191 300 290 340 250 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 460                                     |
| CB170 950 1200 1200 720 490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 920                                     |
| CB189 84 84 50 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                      |
| H <sub>2</sub> CBs 7800 9400 13000 8600 4900 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000                                     |
| CB202 150 190 270 130 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230                                     |
| CB201 89 130 180 72 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120                                     |
| CB199 390 530 730 310 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 550                                     |
| CB194 350 670 960 350 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                                     |
| CB205 30 49 40 <10 <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                      |
| O <sub>e</sub> CBs 1000 1600 2200 862 653 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 421                                     |
| Total PCBs 37000 41000 43000 34000 22000 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 000                                     |

Table 1. (continued)

The derivatized solution was concentrated and passed through activated silicagel packed in a glass column.  $CH_3O-PCBs$  were eluted with 10% dichloromethane/ hexane and concentrated. Identification and quantification of OH–PCBs were performed using GC (Agilent 6890) - high-resolution MS (JEOL JMS-800D). The peaks, which were within 10% of the theoretical ratio of two monitor ions and were more than 10 times of noise (S/N > 10) were also quantified as unknown OH–PCB isomers. All the OH–PCB and PCB congeners in samples were quantified using isotope dilution method to  ${}^{13}C_{12}$ -internal standards. Recoveries for  ${}^{13}C_{12}$ labeled OH–PCBs and PCBs were within 50–80% and 80–100%, respectively.

| Species (Nomenclature)                                | Melon-headed whale (Peponocephala electra) |                         |                       |                       |                                 |                         |                            |                           |                         |
|-------------------------------------------------------|--------------------------------------------|-------------------------|-----------------------|-----------------------|---------------------------------|-------------------------|----------------------------|---------------------------|-------------------------|
| Sample ID<br>Sex<br>Body length (cm)<br>Stranded year | M34072<br>Male<br>249                      | M34074<br>Female<br>232 | M34076<br>Male<br>256 | M34077<br>Male<br>256 | 060301-6<br>Male<br>239<br>2006 | 060301-8<br>Male<br>222 | 060302-25<br>Female<br>250 | 060301-2<br>Female<br>248 | 060302-2<br>Male<br>226 |
| OH–PCBs                                               |                                            |                         |                       |                       |                                 |                         |                            |                           |                         |
| 4'OH-CB101/120                                        | 8.0                                        | < 0.5                   | 8.1                   | 13                    | 20                              | 19                      | 1.5                        | 3.1                       | 9.2                     |
| 3'OH-CB118                                            | 5.0                                        | < 0.5                   | 2.7                   | 4.2                   | 5.3                             | 6.0                     | < 0.5                      | < 0.5                     | < 0.5                   |
| 4OH-CB107/4'OH-CB108                                  | 11                                         | 2.7                     | 10                    | 16                    | 19                              | 21                      | 0.77                       | 1.1                       | 13                      |
| Unknown OH-P5CB(a)                                    | 72                                         | 23                      | 98                    | 200                   | 170                             | 200                     | 33                         | 40                        | 110                     |
| Total OH-P5CB                                         | 96                                         | 26                      | 120                   | 240                   | 210                             | 250                     | 35                         | 44                        | 130                     |
| 4OH-CB134                                             | 1.2                                        | < 0.5                   | 0.68                  | 1.0                   | 1.2                             | 2.0                     | < 0.5                      | < 0.5                     | < 0.5                   |
| 4OH-CB146                                             | 2.5                                        | < 0.5                   | 3.2                   | 6.4                   | 3.5                             | 6.4                     | < 0.5                      | < 0.5                     | 2.7                     |
| 3'OH-CB138                                            | 0.86                                       | < 0.5                   | < 0.5                 | < 0.5                 | < 0.5                           | < 0.5                   | < 0.5                      | < 0.5                     | < 0.5                   |
| 4'OH-CB130                                            | < 0.5                                      | < 0.5                   | < 0.5                 | 0.68                  | 0.80                            | 0.61                    | < 0.5                      | < 0.5                     | < 0.5                   |
| Unknown OH-H <sub>6</sub> CB <sup>(b)</sup>           | 19                                         | 4.0                     | 40                    | 78                    | 51                              | 54                      | 12                         | 14                        | 39                      |
| TotalOH-H <sub>6</sub> CB                             | 23                                         | 4.0                     | 44                    | 86                    | 57                              | 63                      | 12                         | 14                        | 42                      |
| 4OH-CB178                                             | 0.92                                       | < 0.5                   | 1.2                   | 1.9                   | 1.6                             | 2.2                     | 0.54                       | < 0.5                     | < 0.5                   |
| 4OH-CB187                                             | 0.50                                       | 0.60                    | 0.90                  | 0.70                  | 0.90                            | 0.70                    | 2.7                        | 4.0                       | 1.0                     |
| 4'OH-CB172                                            | 1.0                                        | < 0.5                   | 1.6                   | 3.0                   | 1.9                             | 2.1                     | 0.70                       | 0.5                       | 1.3                     |
| 4-OH-CB177                                            | < 0.5                                      | < 0.5                   | < 0.5                 | < 0.5                 | < 0.5                           | < 0.5                   | < 0.5                      | < 0.5                     | < 0.5                   |
| Unknown OH-H7CB(c)                                    | 0.67                                       | < 0.5                   | 1.7                   | 3.6                   | 2.1                             | 3.0                     | 1.5                        | 1.6                       | 1.1                     |
| TotalOH-H7CB                                          | 3.1                                        | 0.60                    | 5.4                   | 9.2                   | 6.5                             | 8.0                     | 5.5                        | 6.1                       | 3.4                     |
| 4'OH-CB199                                            | < 0.5                                      | < 0.5                   | 0.64                  | < 0.5                 | < 0.5                           | < 0.5                   | 1.7                        | 0.96                      | < 0.5                   |
| Total OH-O8CB                                         | < 0.5                                      | < 0.5                   | 0.64                  | < 0.5                 | < 0.5                           | < 0.5                   | 1.7                        | 0.96                      | < 0.5                   |
| Total                                                 | 120                                        | 30                      | 170                   | 330                   | 280                             | 320                     | 54                         | 64                        | 180                     |

| Table 1. | (continued) |
|----------|-------------|

| Species (Nomenclature)                      | Finless porpoise (Neophocaena phocaenoides) |        |        |        |        |        |  |  |
|---------------------------------------------|---------------------------------------------|--------|--------|--------|--------|--------|--|--|
| Sample ID                                   | M34068                                      | M34056 | M33764 | M33765 | M33774 | M33771 |  |  |
| Sex                                         | Female                                      | Female | Male   | Female | Male   | Male   |  |  |
| Body length (cm)                            | 180                                         | 150    | 114    | 102    | 114    | 117    |  |  |
| Stranded year                               | 2005                                        |        |        |        |        |        |  |  |
| OH–PCBs                                     |                                             |        |        |        |        |        |  |  |
| 4'OH-CB101/120                              | 8.9                                         | 2.0    | 8      | 2.4    | 5.8    | 3.2    |  |  |
| 3'OH-CB118                                  | 5.0                                         | 1.0    | 2      | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4OH-CB107/4'OH-CB108                        | 18                                          | 1.2    | 3      | 2.5    | 5.6    | 4.0    |  |  |
| Unknown OH-P5CB(a)                          | 77                                          | 18     | 95     | 30     | 65     | 35     |  |  |
| Total OH-P5CB                               | 110                                         | 22     | 107    | 35     | 76     | 42     |  |  |
| 4OH-CB134                                   | 1.2                                         | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4OH-CB146                                   | 1.5                                         | < 0.5  | 3      | < 0.5  | < 0.5  | < 0.5  |  |  |
| 3'OH-CB138                                  | 0.86                                        | < 0.5  | 1      | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4'OH-CB130                                  | 1.9                                         | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| Unknown OH-H <sub>6</sub> CB <sup>(b)</sup> | 27                                          | 3.2    | 36     | 20     | 31     | 15     |  |  |
| TotalOH-H <sub>6</sub> CB                   | 33                                          | 3.2    | 40     | 20     | 31     | 15     |  |  |
| 4OH-CB178                                   | < 0.5                                       | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4OH-CB187                                   | 0.8                                         | < 0.5  | 0.6    | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4'OH-CB172                                  | 1.7                                         | < 0.5  | 1.3    | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4-OH-CB177                                  | < 0.5                                       | < 0.5  | 1.5    | < 0.5  | < 0.5  | < 0.5  |  |  |
| Unknown OH-H7CB(c)                          | < 0.5                                       | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| TotalOH-H7CB                                | 2.5                                         | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| 4'OH-CB199                                  | < 0.5                                       | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| Total OH-O8CB                               | < 0.5                                       | < 0.5  | < 0.5  | < 0.5  | < 0.5  | < 0.5  |  |  |
| Total                                       | 140                                         | 26     | 150    | 54     | 110    | 57     |  |  |

 ${}^{(a)}17$  (Melon-headed whale ) and 11 (Finless porpoise) isomers were quantified.

<sup>(b)</sup>14 (Melon-headed whale) and 9 (Finless porpoise) isomers were quantified.

<sup>(c)</sup>3 (Melon-headed whale) isomers were quantified.



Fig. 1. Comparison of OH–PCBs/PCBs ratios in the blood of cetaceans; melon-headed shales and finless porpoises with those of human and wildlife reported previously.



Fig. 2. Median concentrations of identified OH–PCBs isomers and unknown homologues detected in the blood of melon-headed whales and finless porpoises.

#### **RESULTS AND DISCUSSION**

### Residue levels of PCBs and OH-PCBs

OH–PCBs were detected in all the blood samples of melon-headed whales and finless porpoises analyzed in this study (Table. 1). Concentrations of OH– PCBs including identified and unknown isomers were in the range of 26–330 pg/ g wet wt. and were 1–2 orders of magnitude lower than PCBs (890–47000 pg/g wet wt.).



Fig. 3. Composition of OH–PCB homolog in the blood of cetaceans analyzed in this study and human reported previously.



Fig. 4. OH–PCB homolog patterns and compositions of identified and unknown OH–PCBs in blood and brain of melon-headed whales.

The residue levels of OH–PCBs and concentration ratios of OH–PCBs to PCBs observed in the cetacean bloods in this study were relatively lower than in humans and other wildlife reported previously (Klasson-Wehler *et al.*, 1998; Sandau *et al.*, 2000; Hoekstra *et al.*, 2003; Gebbink *et al.*, 2005) (Fig. 1). This result indicates poor metabolic capacity for PCBs and possible specific function of transport proteins such as TTR in these odontocetes.

# Accumulation features of OH-PCBs

Among the identified OH-P<sub>5</sub>-H<sub>7</sub>CB congeners, 4'OH-CB101/120, 4OH-CB107/4'OH-CB108, 4OH-CB146, 4OH-CB178, 4OH-CB187, and 4'OH-CB172 were predominant in cetacean blood (Fig. 2). These metabolites were also found in the blood of humans and wildlife (Klasson-Wehler et al., 1998; Sandau et al., 2000; Hoekstra et al., 2003; Gebbink et al., 2005), possibly due to their structural similarity to T4. However, unknown isomers were dominant among OH-P<sub>5</sub>CBs and -H<sub>6</sub>CBs in cetacean blood; especially OH-P<sub>5</sub>CB levels were relatively higher (Fig. 3), whereas predominant OH-H<sub>6</sub>CB or -H<sub>7</sub>CB isomers were found in humans reported previously (Sandau et al., 2000). When compositions of OH-PCB homolog in melon-headed whales and finless porpoises were compared with those in humans (Sandau et al., 2000), considerably higher proportions of OH-P<sub>5</sub>CB were observed in this odontocete species, suggesting a preferential accumulation of OH-P<sub>5</sub>CBs in blood of these two species. Such a trend has been reported also in other odontocete species. OH-P<sub>5</sub>CB detected in beluga whale (Delphinapterus leucus) livers from Canadian Arctic and St. Lawrence River accounted for 90% of total OH-PCB concentrations (McKinney et al., 2006). In addition, higher residue levels of OH-T<sub>3</sub>-P<sub>5</sub>CBs than OH-H<sub>6</sub>-O<sub>8</sub>CBs were observed in bottlenose dolphin (Tursiops truncatus) plasma from Western Atlantic and the Gulf of Mexico (Houde et al., 2006). Considering these observations, it is highly plausible to believe that odontocete species including melon-headed whale and finless porpoise preferentially metabolize lower chlorinated PCBs and accumulate their hydroxylated metabolites in their liver and blood.

## Comparison with brain tissue of melon-headed whales

Our group recently detected OH–PCBs from the brain of melon-headed whales and demonstrated that unknown OH–P<sub>5</sub>CB and –H<sub>6</sub>CBs were considerably higher than identified congeners, also in the brain (23). Among OH–PCB homologues detected in the blood of melon-headed whales, OH–P<sub>5</sub>CBs were predominant followed by OH–H<sub>6</sub>, H<sub>7</sub> and O<sub>8</sub>CBs. This order was similar to that in the brain samples (Fig. 4), suggesting preferential metabolism of lower chlorinated PCBs and accumulation of their hydroxylated metabolites in the bodies of melon-headed whales and finless porpoises. Moreover, predominant unknown OH–P<sub>5</sub>CB and –H<sub>6</sub>CB isomers in melon-headed whale blood analyzed in this study were identical with those detected in the brain of this species. These results might suggest a preferential transfer route for these metabolites into the brain via blood (Fig. 4). Hence, determination of lower chlorinated OH–PCBs and the identification of these unknown OH–PCBs are crucial to assess adverse effects on thyroid hormone homeostasis and cerebral nervous system in cetaceans.

Acknowledgments—We thank the scientists and staff in Chiba prefecture and National Museum of Nature and Science for help in sample collection. This study was supported by Global COE Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Japan Society for the Promotion of Science.

#### REFERENCES

- Bergman, A., E. Klasson-Wehler and H. Kuroki (1994): Selective retention of hydroxylated PCB metabolites in blood. *Environ. Health Perspect.*, **102**, 464–469.
- Brouwer, A., U. G. Ahlborg, M. Van den Berg, L. S. Birnbaum, E. R. Boersma, B. Bosveld, M. S. Denison, L. E. Gray, L. Hagmar, E. Holene, M. Huisman, S. W. Jacobson, J. L. Jacobson, C. Koopman-Esseboom, J. G. Koppe, B. M. Kulig, D. C. Morse, G. Muckle, R. E. Peterson, P. J. J. Sauer, R. F. Seegal, A. E. Smits-Van Prooije, C. L. Touwen Bert, N. Weisglas-Kuperus and G. Winneke (1995): Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. *Eur. J. Pharmacol.*, 293, 1–40.
- Brouwer, A., D. C. Morse, M. C. Lans, A. G. Schuur, A. J. Murk, E. Klasson-Wehler, A. Bergman and T. J. Visser (1998): Interactions of persistent environmental organohalogens with the thyroid hormone system: mechanisms and possible consequences for animal and human health. *Toxicol. Ind. Health*, 14, 59–84.
- Campbell, L. M., D. C. Muir, D. M. Whittle, S. Backus, R. J. Norstrom and A. T. Fisk (2003): Hydroxylated PCBs and other chlorinated phenolic compounds in lake trout (salvelinus namaycush) blood plasma from the Great Lakes region. *Environ. Sci. Technol.*, 37, 1720–1725.
- Cheek, A. O., K. Kow, J. Chen and J. A. McLachlan (1999): Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. *Environ. Health Perspect.*, **107**, 273–278.
- Gauger, K. J., Y. Kato, K. Haraguchi, H.-J. Lehmler, L. W. Robertson, R. Bansal and R. T. Zoeller (2004): Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but not bind to thyroid hormone receptors. *Environ. Health Perspect.*, **112**, 516–523.
- Gebbink, W., C. Sonne, R. Dietz, M. Kirkegaard, F. F. Riget, E. W. Born, D. C. M. Muir and R. J. Letcher (2005): PCBs and PCB metabolites in fat, blood and brain of polar bears (Ursus maritimus) from East Greenland. Organohalogen Compounds, 67, 958–961.
- Hoekstra, P. F., R. J. Letcher, T. M. O'Hara, S. M. Backus, K. R. Solomon and D. C. Muir (2003): Hydroxylated and methylsulfone-containing metabolites of polychlorinated biphenyls in the plasma and blubber of bowhead whales (*Balaena mysticetus*). *Environ. Toxicol. Chem.*, 22, 2650–2658.
- Houde, M., G. Pacepavicius, R. S. Wells, P. A. Fair, R. J. Letcher, M. Alaee, G. D. Bossart, A. A. Hohn, J. Sweeney, K. R. Solomon and D. C. Muir (2006): Polychlorinated biphenyls and hydroxylated polychlorinated biphenyls in plasma of bottlenose dolphins (*Tursiops truncatus*) from the Western Atlantic and the Gulf of Mexico. *Environ. Sci. Technol.*, 40, 5860–5866.
- Iwasaki, T., W. Miyazaki, A. Takeshita, Y. Kuroda and N. Koibuchi (2002): Polychlorinated biphenyls suppress thyroid hormone-induced transactivation. *Biochem. Biophys. Res. Commun.*, 299, 384–388.
- Kitamura, S., N. Jinno, T. Suzuki, K. Sugihara, S. Ohta, H. Kuroki and N. Fujimoto (2005): Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. *Toxicology*, 208, 377–387.
- Klasson-Wehler, E., K. Bergman, M. Athanasiadou, J. P. Ludwig, H. J. Auman, K. Kannan, M. Van den Berg, A. J. Murk, L. A. Feyk and J. P. Giesy (1998): Hydroxylated and methylsulfonyl polychlorinated biphenyl metabolites in albatrosses from midway atoll, North Pacific Ocean. *Environ.l Toxicol. Chem.*, **17**, 1620–1625.
- Kunisue, T., T. Sakiyama, T. K. Yamada, S. Takahashi and S. Tanabe (2007): Occurrence of hydroxylated polychlorinated biphenyls in the brain of cetaceans stranded along the Japanese coast. *Mar. Pollut. Bull.*, 54, 963–973.
- Lans, M. C., E. Klasson-Wehler, M. Willemsen, E. Meussen, S. Safe and A. Brouwer (1993): Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-pdioxins and -dibenzofurans with human transthyretin. *Chem.-Biol. Interac.*, 88, 7–21.
- Li, H., K. G. Drouillard, E. Bennett, G. D. Haffner and R. J. Letcher (2003): Plasma-associated halogenated phenolic contaminants in benthic and pelagic fish species from the Detroit River. *Environ. Sci. Technol.*, 37, 832–839.
- McKinney, M. A., S. De Guise, D. Martineau, P. Béland, M. Lebeuf and R. J. Letcher (2006):

Organohalogen contaminants and metabolites in beluga whale (*Delphinapterus leucas*) liver from two Canadian populations. *Environ. Toxicol. Chem.*, **25**, 1246–1257.

- Meerts, I. A., Y. Assink, P. H. Cenijn, J. H. Van Den Berg, B. M. Weijers, A. Bergman, J. H. Koeman and A. Brouwer (2002): Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. *Toxicol. Sci.*, 68, 361–371.
- Miyazaki, W., T. Iwasaki, A. Takeshita, Y. Kuroda and N. Koibuchi (2004): Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J. Biol. Chem., 279, 18195–18202.
- Oberg, M., A. Sjödin, H. Casabona, I. Nordgren, E. Klasson-Wehler and H. Håkansson (2002): Tissue distribution and half-lives of individual polychlorinated biphenyls and serum levels of 4-hydroxy-2,3,3',4',5-pentachlorobiphenyl in the rat. *Toxicol. Sci.*, **70**, 171–182.
- Olsson, A., K. Ceder, A. Bergman and B. Helander (2000): Nestling blood of the white-tailed sea eagle (*Haliaeetus albicilla*) as an indicator of territorial exposure to organohalogen compounds an evaluation. *Environ. Sci. Technol.*, **34**, 2733–2740.
- Sandau, C. D., P. Ayotte, E. Dewailly, J. Duffe and R. J. Norstrom (2000): Analysis of hydroxylated metabolites of PCBs (OH–PCBs) and other chlorinated phenolic compounds in whole blood from Canadian inuit. *Environ. Health Perspect*, **108**, 611–616.
- Sinjari, T. and P. O. Darnerud (1998): Hydroxylated polychlorinated biphenyls: placental transfer and effects on thyroxine in the foetal mouse. *Xenobiotica*, 28, 21–30.
- Sinjari, T., E. Klasson-Wehler, L. Hovander and P. O. Darnerud (1998): Hydroxylated polychlorinated biphenyls: distribution in the pregnant mouse. *Xenobiotica*, 28, 31–40.
- Tanabe, S. (2002): Contamination and toxic effects of persistent endocrine disrupters in marine mammals and birds. *Mar. Pollut. Bull.*, 45, 69–77.
- Tanabe, S. (2006): Environmental Specimen Bank in Ehime University (es-BANK), Japan for global monitoring. J. Environ. Monit., 8, 782–790.

S. Murata, T. Kunisue, S. Takahashi, T. K. Yamada and S. Tanabe (e-mail: shinsuke@agr.ehime-u.ac.jp)